
Sybase® Adaptive Server™ Enterprise
Transact-SQL® User’s Guide





Document ID: 32300-01-1150

September 1997

Copyright Information

Copyright © 1989–1997 by Sybase, Inc. All rights reserved.

Sybase, Inc., 6475 Christie Avenue, Emeryville, CA 94608.

Information in this document is subject to change without notice. The software described herein is furnished
under a license agreement, and it may be used or copied only in accordance with the terms of that agreement.
No part of this publication may be reproduced, transmitted, or translated in any form or by any means,
electronic, mechanical, manual, optical, or otherwise, without the prior written permission of Sybase, Inc.

Use, duplication, or disclosure by the government is subject to the restrictions set forth in subparagraph (c)(1)(ii)
of DFARS 52.227-7013 for the DOD and as set forth in FAR 52.227-19(a)-(d) for civilian agencies.

Sybase, the Sybase logo, APT-FORMS, Certified SYBASE Professional, Data Workbench, First Impression,
InfoMaker, PowerBuilder, Powersoft, Replication Server, S-Designor, SQL Advantage, SQL Debug, SQL
SMART, SQL Solutions, Transact-SQL, VisualWriter, and VQL are registered trademarks of Sybase, Inc.
Adaptable Windowing Environment, Adaptive Component Architecture, Adaptive Server, Adaptive Server
Monitor, ADA Workbench, AnswerBase, Application Manager, AppModeler, APT-Build, APT-Edit, APT-
Execute, APT-Library, APT-Translator, APT Workbench, Backup Server, BayCam, Bit-Wise, ClearConnect,
Client-Library, Client Services, CodeBank, Column Design, Connection Manager, DataArchitect, Database
Analyzer, DataExpress, Data Pipeline, DataWindow, DB-Library, dbQ, Developers Workbench, DirectConnect,
Distribution Agent, Distribution Director, Dynamo, Embedded SQL, EMS, Enterprise Client/Server, Enterprise
Connect, Enterprise Manager, Enterprise SQL Server Manager, Enterprise Work Architecture, Enterprise Work
Designer, Enterprise Work Modeler, EWA, Formula One, Gateway Manager, GeoPoint, ImpactNow,
InformationConnect, InstaHelp, InternetBuilder, iScript, Jaguar CTS, jConnect for JDBC, KnowledgeBase,
Logical Memory Manager, MainframeConnect, Maintenance Express, MAP, MDI Access Server, MDI Database
Gateway, media.splash, MetaWorks, MethodSet, Net-Gateway, NetImpact, Net-Library, ObjectConnect,
ObjectCycle, OmniConnect, OmniSQL Access Module, OmniSQL Toolkit, Open Client, Open ClientConnect,
Open Client/Server, Open Client/Server Interfaces, Open Gateway, Open Server, Open ServerConnect, Open
Solutions, Optima++, PB-Gen, PC APT-Execute, PC DB-Net, PC Net Library, Power++, Power AMC,
PowerBuilt, PowerBuilt with PowerBuilder, PowerDesigner, Power J, PowerScript, PowerSite, PowerSocket,
Powersoft Portfolio, Power Through Knowledge, PowerWare Desktop, PowerWare Enterprise, ProcessAnalyst,
Quickstart Datamart, Replication Agent, Replication Driver, Replication Server Manager, Report-Execute,
Report Workbench, Resource Manager, RW-DisplayLib, RW-Library, SAFE, SDF, Secure SQL Server, Secure SQL
Toolset, Security Guardian, SKILS, smart.partners, smart.parts, smart.script, SQL Anywhere, SQL Central, SQL
Code Checker, SQL Edit, SQL Edit/TPU, SQL Modeler, SQL Remote, SQL Server, SQL Server/CFT, SQL
Server/DBM, SQL Server Manager, SQL Server SNMP SubAgent, SQL Station, SQL Toolset, Sybase
Client/Server Interfaces, Sybase Development Framework, Sybase Gateways, Sybase IQ, Sybase MPP, Sybase
SQL Desktop, Sybase SQL Lifecycle, Sybase SQL Workgroup, Sybase Synergy Program, Sybase Virtual Server
Architecture, Sybase User Workbench, SybaseWare, SyBooks, System 10, System 11, the System XI logo,
SystemTools, Tabular Data Stream, The Architecture for Change, The Enterprise Client/Server Company, The
Model for Client/Server Solutions, The Online Information Center, Translation Toolkit, Turning Imagination
Into Reality, Unibom, Unilib, Uninull, Unisep, Unistring, Viewer, Visual Components, VisualSpeller,
WarehouseArchitect, WarehouseNow, Warehouse WORKS, Watcom, Watcom SQL, Watcom SQL Server,
Web.SQL, WebSights, WebViewer, WorkGroup SQL Server, XA-Library, and XA-Server are trademarks of
Sybase, Inc. 6/97

All other company and product names used herein may be trademarks or registered trademarks of their
respective companies.





Transact-SQL User’s Guide v

Table of Contents

About This Book
Audience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxi
How to Use This Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxi
Adaptive Server Enterprise Documents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxii
Other Sources of Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxiv
Conventions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxiv

Formatting SQL Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxiv
Font and Syntax Conventions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxv

Case  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxvi
Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxvi

If You Need Help  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xxxvii

1. Introduction
Overview of Adaptive Server and Its Components . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-1

Queries, Data Modification, and Commands. . . . . . . . . . . . . . . . . . . . . . .  1-1
Tables, Columns, and Rows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-2
The Relational Operations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3
Compiled Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-3

Saving Source Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4
Restoring Source Text  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-4
Verifying and Encrypting Source Text. . . . . . . . . . . . . . . . . . . . . . . . . .  1-4

Naming Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-5
SQL Data Characters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-6
SQL Language Characters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-6
Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-6

Using Multibyte Character Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-7
Delimited Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-8
Uniqueness and Qualification Conventions  . . . . . . . . . . . . . . . . . . . .  1-9
Identifying Remote Servers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-11

Expressions in Adaptive Server  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-11
Arithmetic and Character Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-12

Operator Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-12
Arithmetic Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-12
Bitwise Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-13
The String Concatenation Operator  . . . . . . . . . . . . . . . . . . . . . . . . . .  1-14
The Comparison Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-15
Nonstandard Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-15



vi Table of Contents

Adaptive Server Enterprise Release 11.5.x

Comparing Character Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-16
Using the Empty String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-16
Including Quotation Marks in Character Expressions . . . . . . . . . . .  1-16

Relational and Logical Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-17
Using any, all, and in. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-17
Connecting Expressions with and and or  . . . . . . . . . . . . . . . . . . . . . .  1-17

Transact-SQL Extensions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-18
The compute Clause. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-19
Control-of-Flow Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-19
Stored Procedures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-19
Extended Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-20
Triggers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-20
Defaults and Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-21
Error Handling and set Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-21
Additional Adaptive Server Extensions to SQL. . . . . . . . . . . . . . . . . . . .  1-23

Compliance to ANSI Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-24
FIPS Flagger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-25
Chained Transactions and Isolation Levels. . . . . . . . . . . . . . . . . . . . . . . .  1-25
Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-26

Delimited Identifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-26
SQL Standard-Style Comments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-26
Right Truncation of Character Strings . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-26
Permissions Required for update and delete Statements  . . . . . . . . . . . . .  1-27
Arithmetic Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-27
Synonymous Keywords. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-28
Treatment of Nulls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-28

How to Use Transact-SQL with the isql Utility  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-28
Choosing a Password. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-29
Default Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-29
Using the pubs2 and pubs3 Sample Database . . . . . . . . . . . . . . . . . . . . . .  1-30

What Is in the Sample Databases? . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1-30

Part 1: Basic Concepts

2. Queries: Selecting Data from a Table
What Are Queries?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1

select Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-2
Choosing Columns in a Query. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4

Choosing All Columns: select * . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-4
Choosing Specific Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-5



Transact-SQL User’s Guide vii

Adaptive Server Enterprise Release 11.5.x

Rearranging the Order of Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-6
Renaming Columns in Query Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-6
Quoted Strings in Column Headings  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-7
Character Strings in Query Results  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-8
Computed Values in the Select List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-8

Bitwise Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-8
Arithmetic Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-9
Arithmetic Operator Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-12

Selecting text and image Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-13
Using readtext. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-14
Select List Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-15

Eliminating Duplicate Query Results with distinct . . . . . . . . . . . . . . . . . . . . . . . . . .  2-16
Specifying Tables: The from Clause. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-18
Selecting Rows: The where Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-19

Comparison Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-20
Ranges (between and not between) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-21
Lists (in and not in) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-22
Matching Character Strings: like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-25

Using not like . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-27
not like and ^ May Give Different Results. . . . . . . . . . . . . . . . . . . . . .  2-27
Using Wildcard Characters As Literal Characters. . . . . . . . . . . . . . .  2-28
Interaction of Square Brackets and the escape Clause . . . . . . . . . . . .  2-29
Trailing Blanks and % . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-30
Using Wildcard Characters in Columns . . . . . . . . . . . . . . . . . . . . . . .  2-30

Character Strings and Quotation Marks . . . . . . . . . . . . . . . . . . . . . . . . . .  2-31
“Unknown” Values: NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-32

Testing a Column for Null Values . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-33
Difference Between FALSE and UNKNOWN . . . . . . . . . . . . . . . . . .  2-36
Substituting a Value for NULLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-36
Expressions That Evaluate to NULL . . . . . . . . . . . . . . . . . . . . . . . . . .  2-36
Concatenating Strings and NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-36
System-Generated NULLs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-37

Connecting Conditions with Logical Operators  . . . . . . . . . . . . . . . . . . .  2-37
Logical Operator Precedence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-38

3. Summarizing, Grouping, and Sorting Query Results
Summarizing Query Results Using Aggregate Functions  . . . . . . . . . . . . . . . . . . . . .  3-1

Aggregate Functions and Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-3
Using count(*) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-4
Using Aggregate Functions with distinct  . . . . . . . . . . . . . . . . . . . . . . . . . .  3-5



viii Table of Contents

Adaptive Server Enterprise Release 11.5.x

Null Values and the Aggregate Functions  . . . . . . . . . . . . . . . . . . . . . . . . .  3-6
Organizing Query Results into Groups: The group by Clause  . . . . . . . . . . . . . . . . . .  3-7

group by Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-8
group by and SQL Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-9
Nesting Groups with group by  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-10

Referencing Other Columns in Queries Using group by . . . . . . . . . . . . .  3-11
Expressions and group by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-13
Nesting Aggregates with group by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-14
Null Values and group by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-15
where Clause and group by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-16
group by and all  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-17
Using Aggregates Without group by. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-18

Selecting Groups of Data: The having Clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-20
How the having, group by, and where Clauses Interact . . . . . . . . . . . . . . .  3-21
Using having Without group by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-24
Sorting Query Results: The order by Clause  . . . . . . . . . . . . . . . . . . . . . . .  3-25
order by and group by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-27
order by and group by Used with and select distinct . . . . . . . . . . . . . . . . . .  3-28

Summarizing Groups of Data: The compute Clause. . . . . . . . . . . . . . . . . . . . . . . . .  3-29
Row Aggregates and compute . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-32

Rules for compute Clauses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-32
Specifying More Than One Column After compute . . . . . . . . . . . . . . . . .  3-33
Using More Than One compute Clause  . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-34
Applying an Aggregate to More Than One Column. . . . . . . . . . . . . . . .  3-35
Using Different Aggregates in the Same compute Clause . . . . . . . . . . . .  3-35
Grand Values: compute Without by . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-36

Combining Queries: The union Operator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-37
Guidelines for union Queries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3-39
Using union with Other Transact-SQL Commands . . . . . . . . . . . . . . . . .  3-41

4. Joins: Retrieving Data from Several Tables
How Joins Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-1

Join Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2
Joins and the Relational Model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-2

How Joins Are Structured . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-3
The from Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-4
The where Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-5

Join Operators. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-6
Datatypes in Join Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-7
Joins and text and image Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-7

How Joins Are Processed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-7



Transact-SQL User’s Guide ix

Adaptive Server Enterprise Release 11.5.x

Equijoins and Natural Joins. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-8
Joins with Additional Conditions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-9
Joins Not Based on Equality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-10
Self-Joins and Correlation Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-11
The Not-Equal Join . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-13

Not-Equal Joins and Subqueries. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-15
Joining More Than Two Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-16
Outer Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-17

Outer Join Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-21
Views Used with Outer Joins  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-22

How Null Values Affect Joins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-22
Determining Which Table Columns to Join  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4-23

5. Subqueries: Using Queries Within Other Queries
How Subqueries Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-1

Subquery Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-2
Subquery Restrictions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-2
Example of Using a Subquery. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-3
Qualifying Column Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-4
Subqueries with Correlation Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-5
Multiple Levels of Nesting  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-6
Subqueries in update, delete, and insert Statements. . . . . . . . . . . . . . . . . . .  5-7
Subqueries in Conditional Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-8
Using Subqueries in Place of an Expression . . . . . . . . . . . . . . . . . . . . . . . .  5-8

Types of Subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-10
Expression Subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-11

Using Scalar Aggregate Functions to Guarantee a Single Value . . . . . .  5-12
group by and having in Expression Subqueries . . . . . . . . . . . . . . . . . . . . .  5-13
Using distinct with Expression Subqueries . . . . . . . . . . . . . . . . . . . . . . . .  5-13

Quantified Predicate Subqueries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-14
Subqueries with any and all. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-14

> all Means Greater Than All Values . . . . . . . . . . . . . . . . . . . . . . . . . .  5-16
= all Means Equal to Every Value  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-16
> any Means Greater Than At Least One Value . . . . . . . . . . . . . . . . .  5-17
= any Means Equal to Some Value . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-18

Subqueries Used with in  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-20
Subqueries Used with not in . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-22
Subqueries Using not in with NULL . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-23
Subqueries Used with exists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-24
Subqueries Used with not exists  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-26



x Table of Contents

Adaptive Server Enterprise Release 11.5.x

Finding Intersection and Difference with exists . . . . . . . . . . . . . . . . . . . .  5-27
Using Correlated Subqueries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5-28

Correlated Subqueries with Correlation Names  . . . . . . . . . . . . . . . . . . .  5-30
Correlated Subqueries with Comparison Operators. . . . . . . . . . . . . . . .  5-30
Correlated Subqueries in a having Clause . . . . . . . . . . . . . . . . . . . . . . . . .  5-32

6. Using and Creating Datatypes
How Transact-SQL Datatypes Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-1
Using System-Supplied Datatypes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-2

Exact Numeric Types: Integers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-4
Exact Numeric Types: Decimal Numbers . . . . . . . . . . . . . . . . . . . . . . . . . .  6-4
Approximate Numeric Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-5
Character Datatypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-6

text Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-7
Binary Datatypes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-8

image Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-9
Money Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-10
Date and Time Datatypes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-10
The bit Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-11
The timestamp Datatype . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-11
The sysname Datatype  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-12

Converting Between Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-12
Mixed-Mode Arithmetic and Datatype Hierarchy  . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-13

Working with money Datatypes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-14
Determining Precision and Scale . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-14

Creating User-Defined Datatypes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-15
Specifying Length, Precision, and Scale  . . . . . . . . . . . . . . . . . . . . . . . . . .  6-16
Specifying Null Type . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-16
Associating Rules and Defaults with User-Defined Datatypes . . . . . . .  6-17
Creating a User-Defined Datatype with the IDENTITY Property. . . . .  6-17
Creating IDENTITY Columns from Other User-Defined Datatypes  . .  6-18
Dropping a User-Defined Datatype. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-18

Getting Information About Datatypes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6-18

7. Creating Databases and Tables
What Are Databases and Tables?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-1

Enforcing Data Integrity in Databases. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-2
Permissions Within Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-3

Using and Creating Databases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-4
Choosing a Database: use. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-5



Transact-SQL User’s Guide xi

Adaptive Server Enterprise Release 11.5.x

Creating a User Database: create database. . . . . . . . . . . . . . . . . . . . . . . . . . .  7-6
The on Clause . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-7
The log on Clause  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-8
The for load Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-8

Altering the Sizes of Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-9
Dropping Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-10
Creating Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-10

Example of Creating a Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-10
Choosing Table Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-11
create table Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-12
Allowing Null Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-13

Constraints and Rules Used with Null Values. . . . . . . . . . . . . . . . . .  7-14
Defaults and Null Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-15
Nulls Require Variable Length Datatypes  . . . . . . . . . . . . . . . . . . . . .  7-15
text and image Columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-16

Using IDENTITY Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-16
Creating IDENTITY Columns with User-Defined Datatypes . . . . .  7-17
Generating Column Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-18
Referencing IDENTITY Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-18
Referring to IDENTITY Columns with syb_identity  . . . . . . . . . . . . .  7-19
Creating “Hidden” IDENTITY Columns Automatically . . . . . . . . .  7-20
Gaps in IDENTITY Column Values. . . . . . . . . . . . . . . . . . . . . . . . . . .  7-20

Using Temporary Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-23
Ensuring That the Temporary Table Name Is Unique  . . . . . . . . . . .  7-24
Manipulating Temporary Tables in Stored Procedures  . . . . . . . . . .  7-25
General Rules on Temporary Tables . . . . . . . . . . . . . . . . . . . . . . . . . .  7-26

Creating Tables in Different Databases . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-27
Defining Integrity Constraints for Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-27

Specifying the Appropriate Method for Data Integrity  . . . . . . . . . . . . .  7-27
Specifying Table-Level or Column-Level Constraints. . . . . . . . . . . . . . .  7-28
Creating Error Messages for Constraints  . . . . . . . . . . . . . . . . . . . . . . . . .  7-29
After Creating a Check Constraint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-30
Specifying Default Column Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-30
Specifying Unique and Primary Key Constraints . . . . . . . . . . . . . . . . . .  7-31
Specifying Referential Integrity Constraints. . . . . . . . . . . . . . . . . . . . . . .  7-32

Table-Level or Column-Level Referential Integrity Constraints . . .  7-34
Maximum Number of References Allowed for a Table  . . . . . . . . . .  7-34
Using create schema for Cross-Referencing Constraints  . . . . . . . . . .  7-34
General Rules for Creating Referential Integrity Constraints . . . . .  7-35

Specifying Check Constraints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-36
Tips on Designing Applications That Use Referential Integrity  . . . . . .  7-37



xii Table of Contents

Adaptive Server Enterprise Release 11.5.x

How to Design and Create a Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-39
Make a Design Sketch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-40
Create the User-Defined Datatypes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-41
Choose the Columns That Accept Null Values  . . . . . . . . . . . . . . . . . . . .  7-41
Define the Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-42

Creating New Tables from Query Results: select into  . . . . . . . . . . . . . . . . . . . . . . .  7-42
Checking for Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-46
Using select into with IDENTITY Columns . . . . . . . . . . . . . . . . . . . . . . . .  7-46

Selecting an IDENTITY Column into a New Table . . . . . . . . . . . . . .  7-46
Selecting the IDENTITY Column More Than Once  . . . . . . . . . . . . .  7-47
Adding a New IDENTITY Column with select into. . . . . . . . . . . . . .  7-47
Defining a Column Whose Value Must Be Computed . . . . . . . . . . .  7-47
IDENTITY Columns Selected into Tables with Unions or Joins . . .  7-48

Altering Existing Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-48
Changing Table Structures: alter table. . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-49

alter table Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-50
Adding an IDENTITY Column to a Table  . . . . . . . . . . . . . . . . . . . . .  7-50
Adding Integrity Constraints to a Table . . . . . . . . . . . . . . . . . . . . . . .  7-50
Dropping Constraints and Key Definitions . . . . . . . . . . . . . . . . . . . .  7-51
Changing Default Values in an Existing Table. . . . . . . . . . . . . . . . . .  7-51

Renaming Tables and Other Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-52
Renaming Dependent Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-52

Dropping Tables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-53
Assigning Permissions to Users . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-54
Getting Information About Databases and Tables  . . . . . . . . . . . . . . . . . . . . . . . . . .  7-55

Getting Help on Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-55
Getting Help on Database Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-57

Using sp_help on Database Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-57
Using sp_helpconstraint to Find a Table’s Constraint Information. .  7-58
Finding Out How Much Space a Table Uses  . . . . . . . . . . . . . . . . . . .  7-60
Listing Tables, Columns, and Datatypes  . . . . . . . . . . . . . . . . . . . . . .  7-61
Finding an Object Name and ID  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7-62

8. Adding, Changing, and Deleting Data
What Choices Are Available to Modify Data? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-1

Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-2
Referential Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-2
Transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-3
Using the Sample Databases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-3

Datatype Entry Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-4
char, nchar, varchar, nvarchar, and text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-4



Transact-SQL User’s Guide xiii

Adaptive Server Enterprise Release 11.5.x

datetime and smalldatetime  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-4
Entering Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-5
Entering Dates  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-6
Searching for Dates and Times. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-8

binary, varbinary, and image  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-9
money and smallmoney  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-10
float, real, and double precision. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-10
decimal and numeric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-11
int, smallint, and tinyint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-11
timestamp  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-12

Adding New Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-12
insert Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-12
Adding New Rows with values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-13
Inserting Data into Specific Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-13

Restricting Column Data: Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-14
Using the NULL Character String . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-15
NULL Is Not an Empty String . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-16
Inserting Nulls into Columns That Do Not Allow Them. . . . . . . . .  8-16
Adding Rows Without Values in All Columns . . . . . . . . . . . . . . . . .  8-16
Changing a Column’s Value to NULL  . . . . . . . . . . . . . . . . . . . . . . . .  8-17
Adaptive Server-Generated Values for IDENTITY Columns  . . . . .  8-17
Explicitly Inserting Data into an IDENTITY Column. . . . . . . . . . . .  8-18
Retrieving IDENTITY Column Values with @@identity . . . . . . . . . .  8-19
Reserving a Block of IDENTITY Column Values  . . . . . . . . . . . . . . .  8-20
Reaching the IDENTITY Column’s Maximum Value. . . . . . . . . . . .  8-21

Adding New Rows with select  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-22
Computed Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-23
Inserting Data into Some Columns . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-24
Inserting Data from the Same Table  . . . . . . . . . . . . . . . . . . . . . . . . . .  8-24

Changing Existing Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-25
update Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-26
Using the set Clause with update. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-27

Assigning Variables in the set Clause  . . . . . . . . . . . . . . . . . . . . . . . . .  8-28
Using the where Clause with update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-28
Using the from Clause with update . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-29
Updating IDENTITY Columns. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-29

Changing text and image Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-30
Deleting Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-31

delete Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-32
Using the where Clause with delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-32
Using the from Clause with delete . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-32



xiv Table of Contents

Adaptive Server Enterprise Release 11.5.x

Deleting from IDENTITY Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-33
Deleting All Rows from a Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-34

truncate table Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8-34

9. Views: Limiting Access to Data
How Views Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-1

Advantages of Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-2
Focus  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-2
Simpler Data Manipulation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-2
Customization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-3
Security  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-3
Logical Data Independence  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-4

View Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-5
Creating Views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-6

create view Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-7
Using the select Statement with create view  . . . . . . . . . . . . . . . . . . . . . . . . .  9-8

View Definition with Projection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-8
View Definition with a Computed Column . . . . . . . . . . . . . . . . . . . . .  9-8
View Definition with an Aggregate or Built-In Function . . . . . . . . . .  9-9
View Definition with a Join. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-9
Views Derived from Other Views . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-10
distinct Views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-10
Views That Include IDENTITY Columns . . . . . . . . . . . . . . . . . . . . . .  9-11

After Creating a View. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-12
Validating a View’s Selection Criteria Using with check option . . . . . . . .  9-12

Views Derived from Other Views . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-13
Retrieving Data Through Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-14

View Resolution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-15
Redefining Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-15
Renaming Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-17
Altering or Dropping Underlying Objects  . . . . . . . . . . . . . . . . . . . . . . . .  9-17

Modifying Data Through Views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-17
Restrictions on Updating Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-19

Computed Columns in a View Definition  . . . . . . . . . . . . . . . . . . . . .  9-19
group by or compute in a View Definition. . . . . . . . . . . . . . . . . . . . . . .  9-20
Null Values in Underlying Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-20
Views Created Using with check option  . . . . . . . . . . . . . . . . . . . . . . . .  9-21
Multitable Views  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-21
Views with IDENTITY Columns . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-22

Dropping Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-22



Transact-SQL User’s Guide xv

Adaptive Server Enterprise Release 11.5.x

Using Views As Security Mechanisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-23
Getting Information About Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-23

Getting Help on Views with sp_help. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-24
Using sp_helptext to Display View Information . . . . . . . . . . . . . . . . . . . .  9-25
Using sp_depends to List Dependent Objects. . . . . . . . . . . . . . . . . . . . . . .  9-25
Listing All Views in a Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-26

Finding an Object Name and ID  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9-26

Part 2: Advanced Topics

10. Using the Built-In Functions in Queries
System Functions That Return Database Information  . . . . . . . . . . . . . . . . . . . . . . .  10-1

Examples of Using System Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-5
col_length . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-5
datalength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-6
isnull . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-6
user_name . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-6

String Functions Used for Character Strings or Expressions. . . . . . . . . . . . . . . . . .  10-7
Examples of Using String Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-10

charindex, patindex. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-10
str  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-12
stuff . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-12
soundex, difference  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-13
substring . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-14

Concatenation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-15
Concatenation and the Empty String  . . . . . . . . . . . . . . . . . . . . . . . .  10-16

Nested String Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-16
Text Functions Used for text and image Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-17

Examples of Using Text Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-18
Aggregate Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-19
Mathematical Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-20

Examples of Using Mathematical Functions  . . . . . . . . . . . . . . . . . . . . .  10-23
Date Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-24

Get Current Date: getdate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-27
Find Date Parts As Numbers or Names  . . . . . . . . . . . . . . . . . . . . . . . . .  10-28
Calculate Intervals or Increment Dates . . . . . . . . . . . . . . . . . . . . . . . . . .  10-29
Add Date Interval: dateadd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-29

Datatype Conversion Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-30
Supported Conversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-31
Using the General Purpose Conversion Function: convert . . . . . . . . . .  10-32



xvi Table of Contents

Adaptive Server Enterprise Release 11.5.x

Conversion Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-33
Converting Character Data to a Noncharacter Type. . . . . . . . . . . .  10-33
Converting from One Character Type to Another. . . . . . . . . . . . . .  10-34
Converting Numbers to a Character Type . . . . . . . . . . . . . . . . . . . .  10-34
Rounding During Conversion to or from Money Types  . . . . . . . .  10-34
Converting Date and Time Information . . . . . . . . . . . . . . . . . . . . . .  10-35
Converting Between Numeric Types  . . . . . . . . . . . . . . . . . . . . . . . .  10-35

Converting Binary-Like Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-35
Converting Hexadecimal Data. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-36
Converting image Data to binary or varbinary . . . . . . . . . . . . . . . . . .  10-37
Converting Between Binary and Numeric or Decimal Types . . . .  10-37

Conversion Errors. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-37
Arithmetic Overflow and Divide-by-Zero Errors . . . . . . . . . . . . . .  10-37
Scale Errors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-38
Domain Errors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-38

Security Functions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  10-41

11. Creating Indexes on Tables
How Indexes Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-1

Comparing the Two Ways to Create Indexes . . . . . . . . . . . . . . . . . . . . . .  11-2
Guidelines for Using Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-3

When to Index  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-3
When Not to Index. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-4

Creating Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-4
create index Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-5
Indexing More Than One Column: Composite Indexes . . . . . . . . . . . . .  11-5
Using the unique Option  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-6
Including IDENTITY Columns in Nonunique Indexes  . . . . . . . . . . . . .  11-6
Using the fillfactor and max_rows_per_page Options. . . . . . . . . . . . . . . . .  11-7

fillfactor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-7
max_rows_per_page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-8

Using Clustered or Nonclustered Indexes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-8
Creating Clustered Indexes on Segments . . . . . . . . . . . . . . . . . . . . . . . .  11-10
Creating Clustered Indexes on Partitioned Tables. . . . . . . . . . . . . . . . .  11-10

Specifying Index Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-11
Using the ignore_dup_key Option . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-11
Using the ignore_dup_row and allow_dup_row Options . . . . . . . . . . . . .  11-11
Using the sorted_data Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-13
Using the on segment_name Option. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-13

Dropping Indexes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-13



Transact-SQL User’s Guide xvii

Adaptive Server Enterprise Release 11.5.x

Determining What Indexes Exist on a Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-14
Updating Statistics About Indexes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-15

Updating Partition Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  11-16

12. Defining Defaults and Rules for Data
How Defaults and Rules Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-1

Comparing Defaults and Rules with Integrity Constraints . . . . . . . . . .  12-2
Creating Defaults  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-2

create default Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-3
Binding Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-4
Unbinding Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-6
How Defaults Affect Null Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-7
After Creating a Default  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-8

Dropping Defaults . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-8
Creating Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-8

create rule Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-9
Binding Rules  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-10

Rules Bound to Columns  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-10
Rules Bound to User-Defined Datatypes . . . . . . . . . . . . . . . . . . . . .  12-11
Precedence of Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-11

Rules and Null Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-12
After Defining a Rule . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-12
Unbinding Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-13

Dropping Rules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-13
Getting Information About Defaults and Rules. . . . . . . . . . . . . . . . . . . . . . . . . . . .  12-14

13. Using Batches and Control-of-Flow Language
What Are Batches and Control-of-Flow Language? . . . . . . . . . . . . . . . . . . . . . . . . .  13-1
Rules Associated with Batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-2

Examples of Using Batches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-3
Batches Submitted As Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-6

Using Control-of-Flow Language . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-7
if...else  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-8
case Expression  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-10

Using case Expression for Alternative Representation . . . . . . . . . .  13-10
case and Division by Zero . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-11
case Expression Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-12
case Expression Requires At Least One Non-NULL Result. . . . . .  13-13
case and Search Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-13



xviii Table of Contents

Adaptive Server Enterprise Release 11.5.x

case and Value Comparisons. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-15
coalesce  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-17
nullif . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-18

begin...end . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-19
while and break...continue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-20
declare and Local Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-22
goto  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-23
return. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-23
print . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-24
raiserror . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-26
Creating Messages for print and raiserror  . . . . . . . . . . . . . . . . . . . . . . . .  13-27
waitfor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-28
Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-29

Slash-Asterisk Style Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-30
Double-Hyphen Style Comments . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-30

Local Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-31
Declaring Local Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-31
Local Variables and select Statements. . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-32
Local Variables and update Statements  . . . . . . . . . . . . . . . . . . . . . . . . . .  13-33
Local Variables and Subqueries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-34
Local Variables and while Loops and if…else Blocks  . . . . . . . . . . . . . . .  13-34
Variables and Null Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-35

Global Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-36
Transactions and Global Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-37

Checking for Errors with @@error . . . . . . . . . . . . . . . . . . . . . . . . . . .  13-37
Checking IDENTITY Values with @@identity  . . . . . . . . . . . . . . . . .  13-37
Checking the Transaction Nesting Level with @@trancount  . . . . .  13-37
Checking the Transaction State with @@transtate . . . . . . . . . . . . . .  13-38
Checking the Nesting Level with @@nestlevel . . . . . . . . . . . . . . . . .  13-38
Checking the Status from the Last fetch  . . . . . . . . . . . . . . . . . . . . . .  13-38

Global Variables Affected by set Options  . . . . . . . . . . . . . . . . . . . . . . . .  13-39
Language and Character Set Information in Global Variables. . . . . . .  13-41
Global Variables for Monitoring System Activity . . . . . . . . . . . . . . . . .  13-42
Server Information Stored in Global Variables. . . . . . . . . . . . . . . . . . . .  13-43
Global Variables and text and image Data . . . . . . . . . . . . . . . . . . . . . . . .  13-44

14. Using Stored Procedures
How Stored Procedures Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-1

Examples of Creating and Using Stored Procedures. . . . . . . . . . . . . . . .  14-2
Stored Procedures and Permissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-4
Stored Procedures and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-5



Transact-SQL User’s Guide xix

Adaptive Server Enterprise Release 11.5.x

Creating and Executing Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-5
Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-6
Default Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-9

NULL As the Default Parameter . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-11
Wildcard Characters in the Default Parameter  . . . . . . . . . . . . . . . .  14-11

Using More Than One Parameter. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-12
Procedure Groups. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-13
Using with recompile in create procedure. . . . . . . . . . . . . . . . . . . . . . . . . . .  14-14
Using with recompile in execute. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-14
Nesting Procedures Within Procedures. . . . . . . . . . . . . . . . . . . . . . . . . .  14-15
Using Temporary Tables in Stored Procedures  . . . . . . . . . . . . . . . . . . .  14-15
Setting Options in Stored Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-16
After Creating a Stored Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-16
Executing Stored Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-17

Executing Procedures After a Time Delay . . . . . . . . . . . . . . . . . . . .  14-17
Executing Procedures Remotely  . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-17

Returning Information from Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-18
Return Status . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-18

Reserved Return Status Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-19
User-Generated Return Values. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-20

Checking Roles in Procedures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-20
Return Parameters  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-21

Passing Values in Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-25
The output Keyword. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-26

Restrictions Associated with Stored Procedures. . . . . . . . . . . . . . . . . . . . . . . . . .  14-26
Qualifying Names Inside Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-27

Renaming Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-27
Renaming Objects Referenced by Procedures  . . . . . . . . . . . . . . . . . . . .  14-28

Using Stored Procedures As Security Mechanisms . . . . . . . . . . . . . . . . . . . . . . . .  14-28
Dropping Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-28
System Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-29

System Procedures Used for Security Administration . . . . . . . . . . . . .  14-30
System Procedures Used for Remote Servers . . . . . . . . . . . . . . . . . . . . .  14-30
System Procedures Used for Data Definition and Database Objects  .  14-31
System Procedures Used for User-Defined Messages. . . . . . . . . . . . . .  14-31
System Procedures Used for System Administration . . . . . . . . . . . . . .  14-31

Getting Information About Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-32
Getting a Report with sp_help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14-32
Viewing the Source Text of a Procedure with sp_helptext . . . . . . . . . . .  14-33
Identifying Dependent Objects with sp_depends  . . . . . . . . . . . . . . . . . .  14-33
Identifying Permissions with sp_helprotect . . . . . . . . . . . . . . . . . . . . . . .  14-34



xx Table of Contents

Adaptive Server Enterprise Release 11.5.x

15. Using Extended Stored Procedures
Why Use Extended Stored Procedures?  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-1

ESP Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-2
XP Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-2
Dynamic Link Library Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-3
Open Server API. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-3
Example of Creating and Using ESPs . . . . . . . . . . . . . . . . . . . . . . . . .  15-4
After Creating an ESP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-5
ESPs and Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-5
ESPs and Performance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-6

Creating Functions for ESPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-7
Files for ESP Development  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-7
Open Server Data Structures. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-7

SRV_PROC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-7
CS_SERVERMSG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-8
CS_DATAFMT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-8

Open Server Return Codes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-8
Outline of a Simple ESP Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-8

Multithreading . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-9
ESP Function Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-9
Building the DLL  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-15

Search Order for DLLs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-15
Sample Makefile (UNIX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-16
Sample Makefile (Windows NT) . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-17
Sample Definitions File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-18

Creating and Removing ESPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-18
Using create procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-18
Using sp_addextendedproc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-19
Removing an ESP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-20
Renaming ESPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-21

Executing ESPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-21
System ESPs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-22
Getting Information About ESPs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-23
ESP Exceptions and Messages . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  15-23

16. Triggers: Enforcing Referential Integrity
How Triggers Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-1

What Triggers Can Do . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-2
Using Triggers vs. Integrity Constraints . . . . . . . . . . . . . . . . . . . . . . . . . .  16-3

Creating Triggers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-3



Transact-SQL User’s Guide xxi

Adaptive Server Enterprise Release 11.5.x

create trigger Syntax. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-4
SQL Statements That Are Not Allowed in Triggers  . . . . . . . . . . . . .  16-5

After Creating a Trigger. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-6
Using Triggers to Maintain Referential Integrity . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-6

How Referential Integrity Triggers Work . . . . . . . . . . . . . . . . . . . . . . . . .  16-7
Testing Data Modifications Against the Trigger Test Tables. . . . . . . . . .  16-7
Insert Trigger Example. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-9
Delete Trigger Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-10

Cascading Delete Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-11
Restricted Delete Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-11

Update Trigger Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-13
Restricted Update Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-13
Updating a Foreign Key  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-17

Multirow Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-18
Insert Trigger Example Using Multiple Rows  . . . . . . . . . . . . . . . . . . . .  16-19
Delete Trigger Example Using Multiple Rows. . . . . . . . . . . . . . . . . . . .  16-19
Update Trigger Example Using Multiple Rows . . . . . . . . . . . . . . . . . . .  16-20
Conditional Insert Trigger Example Using Multiple Rows  . . . . . . . . .  16-21

Rolling Back Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-22
Nesting Triggers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-24

Trigger Self-Recursion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-25
Rules Associated with Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-27

Triggers and Permissions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-27
Trigger Restrictions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-28
Implicit and Explicit Null Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-28
Triggers and Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-30
set Commands in Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-30
Renaming and Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-30
Trigger Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-30

Dropping Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-31
Getting Information About Triggers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-31

sp_help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-31
sp_helptext. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-32
sp_depends. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  16-32

17. Cursors: Accessing Data Row by Row
How Cursors Work  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-1

How Adaptive Server Processes Cursors . . . . . . . . . . . . . . . . . . . . . . . . .  17-2
Declaring Cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-5

declare cursor Syntax . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-6



xxii Table of Contents

Adaptive Server Enterprise Release 11.5.x

Types of Cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-7
Cursor Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-7
Cursor Scans and the Cursor Result Set  . . . . . . . . . . . . . . . . . . . . . . . . . .  17-9
Making Cursors Updatable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-10
Determining Which Columns Can Be Updated. . . . . . . . . . . . . . . . . . .  17-11

Opening Cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-12
Fetching Data Rows Using Cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-13

fetch Syntax  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-13
Checking the Cursor Status. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-14
Getting Multiple Rows with Each fetch . . . . . . . . . . . . . . . . . . . . . . . . . .  17-15
Checking the Number of Rows Fetched . . . . . . . . . . . . . . . . . . . . . . . . .  17-16

Updating and Deleting Rows Using Cursors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-16
Updating Cursor Result Set Rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-16
Deleting Cursor Result Set Rows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-17

Closing and Deallocating Cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-19
An Example Using a Cursor. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-19
Using Cursors in Stored Procedures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-22
Cursors and Locking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-24

Cursor Locking Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-25
Getting Information About Cursors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-25
Using Browse Mode in Place of Cursors  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-26

Browsing a Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-27
Browse Mode Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-27
Timestamping a New Table for Browsing. . . . . . . . . . . . . . . . . . . . . . . .  17-27
Timestamping an Existing Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-28
Comparing timestamp Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17-28

18. Transactions: Maintaining Data Consistency and Recovery
How Transactions Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-1

Transactions and Consistency. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-3
Transactions and Recovery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-4
Using Transactions When Component Integration Services Is Enabled 18-4

Using Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-4
Allowing Data Definition Commands in Transactions . . . . . . . . . . . . . .  18-5
System Procedures That Are Not Allowed in Transactions . . . . . . . . . .  18-6
Beginning and Committing Transactions . . . . . . . . . . . . . . . . . . . . . . . . .  18-6
Rolling Back and Saving Transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-7
Checking the State of Transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-9
Nested Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-10
Example of a Transaction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-12



Transact-SQL User’s Guide xxiii

Adaptive Server Enterprise Release 11.5.x

Selecting the Transaction Mode and Isolation Level  . . . . . . . . . . . . . . . . . . . . . . .  18-13
Choosing a Transaction Mode  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-13

Transaction Modes and Nested Transactions. . . . . . . . . . . . . . . . . .  18-14
Finding the Status of the Current Transaction Mode . . . . . . . . . . .  18-15

Choosing an Isolation Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-15
Preventing Dirty Reads, Nonrepeatable Reads, and Phantoms . .  18-16
Dirty Reads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-16
Finding the Status of the Current Isolation Level . . . . . . . . . . . . . .  18-17
Changing the Isolation Level for a Query  . . . . . . . . . . . . . . . . . . . .  18-17
Isolation Level Precedences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-19
Cursors and Isolation Levels  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-20
Stored Procedures and Isolation Levels  . . . . . . . . . . . . . . . . . . . . . .  18-21
Triggers and Isolation Levels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-21

Compliance to SQL Standards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-22
Using Transactions in Stored Procedures and Triggers . . . . . . . . . . . . . . . . . . . . .  18-22

Errors and Transaction Rollbacks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-24
Transaction Modes and Stored Procedures. . . . . . . . . . . . . . . . . . . . . . .  18-27

Setting Transaction Modes for Stored Procedures. . . . . . . . . . . . . .  18-28
Using Cursors in Transactions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-29
Issues to Consider When Using Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-30
Backup and Recovery of Transactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  18-31

A. The pubs2 Database
Tables in the pubs2 Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-1

publishers Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-1
authors Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-2
titles Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-4
titleauthor Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-10
salesdetail Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-12
sales Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-16
stores Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-18
roysched Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-19
discounts Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-22
blurbs Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-22
au_pix Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-24

Diagram of the pubs2 Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  A-27

B. The pubs3 Database
Tables in the pubs3 Database  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-1

publishers Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-1



xxiv Table of Contents

Adaptive Server Enterprise Release 11.5.x

authors Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-2
titles Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-4
titleauthor Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-10
salesdetail Table  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-12
sales Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-16
stores Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-18
store_employees Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-19
roysched Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-23
discounts Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-26
blurbs Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-26

Diagram of the pubs3 Database. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  B-29

 Index



Transact-SQL User’s Guide xxv

List of Figures

Figure 1-1: Characters used for different parts of SQL statements ............................................1-5
Figure 10-1: Implicit, explicit, and unsupported datatype conversions..................................10-32
Figure 16-1: Trigger test tables during insert, delete, and update operations ..........................16-8
Figure 17-1: How the cursor result set and cursor position work for a fetch ...........................17-2
Figure 17-2: Steps for using cursors................................................................................................17-3
Figure 17-3: How cursors operate within scopes..........................................................................17-8
Figure 18-1: Nesting transaction statements................................................................................18-23
Figure A-1: Diagram of the pubs2 database ............................................................................... A-27
Figure B-1: Diagram of the pubs3 database ................................................................................ B-29



xxvi List of Figures

Adaptive Server Enterprise Release 11.5.x



Transact-SQL User’s Guide xxvii

List of Tables

Table 1: Font and syntax conventions for this manual ....................................................... xxxv
Table 2: Types of expressions used in syntax statements .................................................. xxxvi
Table 1-1: ASCII characters used in SQL......................................................................................1-6
Table 1-2: Arithmetic operators ...................................................................................................1-12
Table 1-3: Truth tables for bitwise operations............................................................................1-13
Table 1-4: Examples of bitwise operations.................................................................................1-14
Table 1-5: Comparison operators ................................................................................................1-15
Table 1-6: Truth tables for logical expressions...........................................................................1-18
Table 1-7: set options for ANSI compliance...............................................................................1-25
Table 1-8: ANSI-compatible keyword synonyms .....................................................................1-28
Table 2-1: Bitwise operators ...........................................................................................................2-9
Table 2-2: Arithmetic operators .....................................................................................................2-9
Table 2-3: Comparison operators ................................................................................................2-20
Table 2-4: Special symbols for matching character strings......................................................2-25
Table 2-5: Using square brackets to search for wildcard characters.......................................2-28
Table 2-6: Using the escape clause ..............................................................................................2-28
Table 3-1: Syntax and results of aggregate functions .................................................................3-2
Table 3-2: How aggregates are used with a compute statement ............................................3-32
Table 4-1: Join operators .................................................................................................................4-6
Table 4-2: Outer join operators ......................................................................................................4-7
Table 6-1: Adaptive Server system datatypes..............................................................................6-2
Table 6-2: Integer datatypes ...........................................................................................................6-4
Table 6-3: Approximate numeric datatypes.................................................................................6-5
Table 6-4: Character datatypes.......................................................................................................6-6
Table 6-5: Binary datatypes ............................................................................................................6-8
Table 6-6: Money datatypes .........................................................................................................6-10
Table 6-7: Date datatypes..............................................................................................................6-11
Table 6-8: Precision and scale after arithmetic operations.......................................................6-15
Table 7-1: Column definition and null defaults ........................................................................7-15
Table 7-2: Conversion of fixed-length to variable-length datatypes ......................................7-16
Table 7-3: Sample table design.....................................................................................................7-40
Table 8-1: Evaluating numeric data ............................................................................................8-10
Table 8-2: Valid precision and scale for numeric data..............................................................8-11
Table 8-3: Invalid precision and scale for numeric data ..........................................................8-11
Table 8-4: Columns with no values.............................................................................................8-17
Table 10-1: System functions, arguments, and results ...............................................................10-2
Table 10-2: Arguments used in string functions .........................................................................10-8
Table 10-3: String functions, arguments and results...................................................................10-8



xxviii List of Tables

Adaptive Server Enterprise Release 11.5.x

Table 10-4: String function examples..........................................................................................10-14
Table 10-5: Built-in text functions for text and image data......................................................10-17
Table 10-6:  Aggregate functions .................................................................................................10-19
Table 10-7: Arguments used in mathematical functions..........................................................10-21
Table 10-8: Mathematical functions ............................................................................................10-21
Table 10-9: Examples of mathematical functions......................................................................10-24
Table 10-10:  Date functions ...........................................................................................................10-25
Table 10-11:  Date parts...................................................................................................................10-26
Table 10-12:  Week number date parts..........................................................................................10-27
Table 10-13:  Converting date formats with the style parameter..............................................10-40
Table 10-14:  Security functions .....................................................................................................10-41
Table 11-1: Index options.............................................................................................................. 11-11
Table 11-2: Duplicate row options in indexes............................................................................11-12
Table 12-1: Column definition and null defaults ........................................................................12-7
Table 12-2: Precedence of rules ....................................................................................................12-11
Table 13-1: Control-of-flow and related keywords.....................................................................13-7
Table 13-2: Comparing null values .............................................................................................13-35
Table 13-3: @@transtate values ....................................................................................................13-38
Table 13-4: @@sqlstatus values ....................................................................................................13-38
Table 13-5: Global variables containing session options..........................................................13-40
Table 13-6: set options and values for @@options ....................................................................13-40
Table 13-7: Global variables for language and character sets .................................................13-41
Table 13-8:  Global variables that monitor system activity......................................................13-42
Table 13-9:  Global variables containing Adaptive Server information.................................13-43
Table 13-10:  Text pointer information stored in global variables ............................................13-44
Table 14-1: Reserved return status values..................................................................................14-19
Table 15-1: Open Server routines for ESP support .....................................................................15-3
Table 15-2: Naming conventions for DLL extensions ................................................................15-4
Table 17-1: @@sqlstatus values ....................................................................................................17-14
Table 18-1: DDL commands allowed in transactions .................................................................18-6
Table 18-2: DDL commands not allowed in transactions ..........................................................18-6
Table 18-3: @@transtate values ......................................................................................................18-9
Table 18-4: How rollback affects processing..............................................................................18-25
Table 18-5: Rollbacks caused by duplicate key errors/rules violations ................................18-26
Table A-1: publishers table ............................................................................................................ A-2
Table A-2: authors table ................................................................................................................. A-3
Table A-3: titles table ...................................................................................................................... A-5
Table A-4: titleauthor table...........................................................................................................A-11
Table A-5: salesdetail table .......................................................................................................... A-13
Table A-6: sales table .................................................................................................................... A-17
Table A-7: stores table .................................................................................................................. A-18



Transact-SQL User’s Guide xxix

Adaptive Server Enterprise Release 11.5.x

Table A-8: roysched table ............................................................................................................ A-19
Table A-9: discounts table............................................................................................................ A-22
Table A-10: blurbs table ................................................................................................................. A-23
Table A-11: au_pix table ................................................................................................................ A-25
Table B-1: publishers table ............................................................................................................. B-2
Table B-2: authors table .................................................................................................................. B-3
Table B-3: titles table ....................................................................................................................... B-5
Table B-4: titleauthor table........................................................................................................... B-11
Table B-5: salesdetail table ........................................................................................................... B-13
Table B-6: sales table ..................................................................................................................... B-16
Table B-7: stores table ................................................................................................................... B-18
Table B-8: store_employees table ................................................................................................ B-19
Table B-9: roysched table ............................................................................................................. B-23
Table B-10: discounts table............................................................................................................. B-26
Table B-11: blurbs table .................................................................................................................. B-27



xxx List of Tables

Adaptive Server Enterprise Release 11.5.x



Transact-SQL User’s Guide xxxi

About This Book

This manual, the Transact-SQL User’s Guide, documents
Transact-SQL®, an enhanced version of the SQL relational database
language. The Transact-SQL User’s Guide is intended for both
beginners and those who have experience with other
implementations of SQL.

Audience

Users of the Sybase® Adaptive Server™ Enterprise database
management systems who are unfamiliar with SQL can consider this
guide as a textbook and start at the beginning. Novice SQL users
should concentrate on the first part of this book. The second part
describes advanced topics.

Readers acquainted with other versions of SQL will find this manual
useful both as a review and as a guide to Transact-SQL
enhancements. SQL experts should study the capabilities and
features that Transact-SQL has added to standard SQL, especially the
material on stored procedures.

How to Use This Book

This book is a complete guide to Transact-SQL. It contains an
introductory chapter, which gives an overview of SQL. The
remaining chapters are divided into two main parts: Basic Concepts
and Advanced Topics.

Chapter 1, “Introduction,” describes the naming conventions used
by SQL and the enhancements (also known as extensions) added by
Transact-SQL. It also includes a description of how to get started
with Transact-SQL using the isql utility. All users should read this
chapter, because it prepares you for the other chapters.

“Part 1: Basic Concepts” includes Chapters 2–9. These chapters
introduce you to the basic functionality of SQL. Users new to SQL
should become familiar with the concepts described in these
chapters before moving on to Part 2. Experienced users of SQL may
want to skim through these chapters to learn about the several
Transact-SQL extensions introduced there and to review the
material.



xxxii About This Book

Adaptive Server Enterprise Documents Adaptive Server Enterprise Release 11.5.x

“Part 2: Advanced Topics” includes Chapters 10–18. These chapters
describe Transact-SQL in more detail. Most of the Transact-SQL
extensions are described here. Users familiar with SQL, but not
Transact-SQL, should concentrate on these chapters.

The examples in this guide are based on the pubs2 and, where noted,
pubs3 sample databases. For best use of the Transact-SQL User’s
Guide, new users should work through the examples. Ask your
System Administrator how to get a clean copy of pubs2 and pubs3.
For a complete description of these databases, see Appendix A, “The
pubs2 Database,” and Appendix B, “The pubs3 Database.”

You can use Transact-SQL with the Adaptive Server stand-alone
program isql. The isql program is a utility program called directly
from the operating system.

Adaptive Server Enterprise Documents

The following documents comprise the Sybase Adaptive Server
Enterprise documentation:

• The Release Bulletin for your platform – contains last-minute
information that was too late to be included in the books.

A more recent version of the Release Bulletin may be available on
the World Wide Web. To check for critical product or document
information that was added after the release of the product CD,
use SyBooks™-on-the-Web.

• The Adaptive Server installation documentation for your
platform – describes installation and upgrade procedures for all
Adaptive Server and related Sybase products.

• The Adaptive Server configuration documentation for your
platform – describes configuring a server, creating network
connections, configuring for optional functionality, such as
auditing, installing most optional system databases, and
performing operating system administration tasks.

• What’s New in Adaptive Server Enterprise? – describes the new
features in Adaptive Server release 11.5, the system changes
added to support those features, and the changes that may affect
your existing applications.

• Navigating the Documentation for Adaptive Server – an electronic
interface for using Adaptive Server. This online document
provides links to the concepts and syntax in the documentation
that are relevant to each task.



Transact-SQL User’s Guide xxxiii

Adaptive Server Enterprise Release 11.5.x Adaptive Server Enterprise Documents

• Transact-SQL User’s Guide – documents Transact-SQL, Sybase’s
enhanced version of the relational database language. This
manual serves as a textbook for beginning users of the database
management system. This manual also contains descriptions of
the pubs2 and pubs3 sample databases.

• System Administration Guide – provides in-depth information
about administering servers and databases. This manual includes
instructions and guidelines for managing physical resources and
user and system databases, and specifying character conversion,
international language, and sort order settings.

• Adaptive Server Reference Manual – contains detailed information
about all Transact-SQL commands, functions, procedures, and
datatypes. This manual also contains a list of the Transact-SQL
reserved words and definitions of system tables.

• Performance and Tuning Guide – explains how to tune Adaptive
Server for maximum performance. This manual includes
information about database design issues that affect
performance, query optimization, how to tune Adaptive Server
for very large databases, disk and cache issues, and the effects of
locking and cursors on performance.

• The Utility Programs manual for your platform – documents the
Adaptive Server utility programs, such as isql and bcp, which are
executed at the operating system level.

• Security Administration Guide – explains how to use the security
features provided by Adaptive Server to control user access to
data. This manual includes information about how to add users
to Adaptive Server, administer both system and user-defined
roles, grant database access to users, and manage remote
Adaptive Servers.

• Security Features User’s Guide – provides instructions and
guidelines for using the security options provided in Adaptive
Server from the perspective of the non-administrative user.

• Error Messages and Troubleshooting Guide – explains how to resolve
frequently occurring error messages and describes solutions to
system problems frequently encountered by users.

• Component Integration Services User’s Guide for Adaptive Server
Enterprise and OmniConnect – explains how to use the Adaptive
Server Component Integration Services feature to connect remote
Sybase and non-Sybase databases.



xxxiv About This Book

Other Sources of Information Adaptive Server Enterprise Release 11.5.x

• Adaptive Server Glossary – defines technical terms used in the
Adaptive Server documentation.

• Master Index for Adaptive Server Publications – combines the
indexes of the Adaptive Server Reference Manual, Component
Integration Services User’s Guide, Performance and Tuning Guide,
Security Administration Guide, Security Features User’s Guide,
System Administration Guide, and Transact-SQL User’s Guide.

Other Sources of Information

Use the SyBooks™ and SyBooks-on-the-Web online resources to
learn more about your product:

• SyBooks documentation is on the CD that comes with your
software. The DynaText browser, also included on the CD, allows
you to access technical information about your product in an
easy-to-use format.

Refer to Installing SyBooks in your documentation package for
instructions on installing and starting SyBooks.

• SyBooks-on-the-Web is an HTML version of SyBooks that you
can access using a standard Web browser.

To use SyBooks-on-the-Web, go to http://www.sybase.com, and
choose Documentation.

Conventions

The following sections describe conventions used in this manual.

Formatting SQL Statements

SQL is a free-form language. There are no rules about the number of
words you can put on a line or where you must break a line.
However, for readability, all examples and syntax statements in this
manual are formatted so that each clause of a statement begins on a
new line. Clauses that have more than one part extend to additional
lines, which are indented.



Transact-SQL User’s Guide xxxv

Adaptive Server Enterprise Release 11.5.x Conventions

Font and Syntax Conventions

The font and syntax conventions in this manual are as follows:

• Syntax statements (displaying the syntax and all options for a
command) appear as follows:

sp_dropdevice [ device_name ]

or, for a command with more options:

Table 1: Font and syntax conventions for this manual

Element Example

Command names, command option
names, utility names, utility flags, and
other keywords are bold.

select
sp_configure

Database names, datatypes, file names
and path names are in italics.

master database

Variables, or words that stand for values
that you fill in, are in italics.

select column_name
from table_name
where search_conditions

Parentheses are to be typed as part of the
command.

compute row_aggregate  ( column_name )

Curly braces indicate that you must
choose at least one of the enclosed
options. Do not type the braces.

{cash, check, credit}

Brackets mean choosing one or more of
the enclosed options is optional. Do not
type the brackets.

[anchovies]

The vertical bar means you may select
only one of the options shown.

{die_on_your_feet | live_on_your_knees |

live_on_your_feet}

The comma means you may choose as
many of the options shown as you like,
separating your choices with commas to
be typed as part of the command.

[extra_cheese, avocados, sour_cream]

An ellipsis (...) means that you can
repeat the last unit as many times as you
like.

buy thing = price [cash | check | credit]

 [, thing = price [cash | check | credit]]...

You must buy at least one thing and give its price. You may
choose a method of payment: one of the items enclosed in
square brackets. You may also choose to buy additional
things: as many of them as you like. For each thing you buy,
give its name, its price, and (optionally) a method of
payment.



xxxvi About This Book

Conventions Adaptive Server Enterprise Release 11.5.x

select column_name
    from table_name
    where search_conditions

In syntax statements, keywords (commands) are in normal font
and identifiers are in lowercase: normal font for keywords,
italics for user-supplied words.

• Examples of output from the computer appear as follows:

0736    New Age Books            Boston       MA
0877    Binnet & Hardley         Washington   DC
1389    Algodata Infosystems    Berkeley      CA

Case

In this manual, most of the examples are in lowercase. However, you
can disregard case when typing Transact-SQL keywords. For
example, SELECT, Select, and select are the same.

Note that Adaptive Server’s sensitivity to the case of database
objects, such as table names, depends on the sort order installed on
Adaptive Server. You can change case sensitivity for single-byte
character sets by reconfiguring the Adaptive Server sort order. See
“Changing the Default Character Set, Sort Order, or Language” in
Chapter 13, “Configuring Character Sets, Sort Orders, and
Languages” in the System Administration Guide for more information.

Expressions

Adaptive Server syntax statements use the following types of
expressions.

Table 2: Types of expressions used in syntax statements

Usage Definition

expression Can include constants, literals, functions,
column identifiers, variables, or parameters

logical expression An expression that returns TRUE, FALSE, or
UNKNOWN

constant expression An expression that always returns the same
value, such as “5+3” or “ABCDE”

float_expr Any floating-point expression or expression
that implicitly converts to a floating value



Transact-SQL User’s Guide xxxvii

Adaptive Server Enterprise Release 11.5.x If You Need Help

If You Need Help

Each Sybase installation that has purchased a support contract has
one or more designated people who are authorized to contact Sybase
Technical Support. If you cannot resolve a problem using the
manuals or online help, please have the designated person contact
Sybase Technical Support or the Sybase subsidiary in your area.

integer_expr Any integer expression, or an expression that
implicitly converts to an integer value

numeric_expr Any numeric expression that returns a single
value

char_expr Any expression that returns a single
character-type value

binary_expression An expression that returns a single binary or
varbinary value

Table 2: Types of expressions used in syntax statements  (continued)

Usage Definition



xxxviii About This Book

If You Need Help Adaptive Server Enterprise Release 11.5.x



Transact-SQL User’s Guide 1-1

1 Introduction 1.

This chapter discusses:

• Overview of Adaptive Server and Its Components   1-1

• Naming Conventions   1-5

• Expressions in Adaptive Server   1-11

• Transact-SQL Extensions   1-18

• Compliance to ANSI Standards   1-24

• How to Use Transact-SQL with the isql Utility   1-28

Overview of Adaptive Server and Its Components

SQL (Structured Query Language) is a high-level language for
relational database systems. Originally developed by IBM’s San Jose
Research Laboratory in the late 1970s, SQL has been adopted by and
adapted for many relational database management systems. It has
been approved as the official relational query language standard by
the American National Standards Institute (ANSI) and the
International Organization for Standardization (ISO).

Transact-SQL is compatible with IBM SQL and most other
commercial implementations of SQL, and provides important extra
capabilities and functions, such as summary calculations, stored
procedures (predefined SQL statements), and error handling.

Although the “Q” in SQL stands for “Query,” SQL includes
commands not only for querying (retrieving data from) a database,
but also for creating new databases and database objects, adding
new data, modifying existing data, and other functions.

Queries, Data Modification, and Commands

In this manual, query means a request for the retrieval of data, using
the select command. For example, the following query asks for a
listing of authors who live in the state of California:

select au_lname, city, state
from authors
where state = "CA"



1-2 Introduction

Overview of Adaptive Server and Its Components Adaptive Server Enterprise Release 11.5.x

Data modification refers to an addition, deletion, or change to data,
using the insert, delete, or update command, respectively. For example:

insert into authors (au_lname, au_fname, au_id)
values ("Smith", "Gabriella", "999-03-2346")

Other SQL commands are instructions to perform administrative
operations. For example:

drop table authors

Each command or SQL statement begins with a keyword, such as
insert, that names the basic operation performed. Many SQL
commands also have one or more keyword phrases, or clauses, that
tailor the command to meet a particular need. When a query is run,
Transact-SQL displays the results for the user. If no data meets the
criteria specified in the query, the user gets a message to that effect.
Data modification statements and administrative statements do not
display results, since they do not retrieve data. Transact-SQL
provides a message to let the user know whether the data
modification or other command has been performed.

Tables, Columns, and Rows

SQL is a database language specifically designed for the relational
model of database management. In a relational database
management system, users see data as tables, which are also known
as relations.

Each row (synonymous with record) of a table describes one
occurrence of an entity—a person, a company, a sale, or some other
thing. Each column, or field, describes one characteristic of the
entity—a person’s name or address, a company’s name or president,
a sale’s items sold or quantity or date. A database is made up of a set
of related tables.

Name Address

Jane Doe 127 Elm St.

Richard Roe 10 Trenholm Place

Edgar Poe 1533 Usher House Road

Columns

Rows



Transact-SQL User’s Guide 1-3

Adaptive Server Enterprise Release 11.5.x Overview of Adaptive Server and Its Components

The Relational Operations

The basic query operations in a relational system are selection (also
called restriction), projection, and join. All of them can be combined
in the SQL select command.

A selection is a subset of the rows in a table, based on some
conditions specified by the user. For example, you might want to
look at the rows for all the authors who live in California.

A projection is a subset of the columns in a table. For example, a
query can display only the name and city of all the authors, omitting
the street address, the phone number, and other information.

A join links the rows in two or more tables by comparing the values
in specified fields. For example, suppose you have one table
containing information about authors, including the columns au_id
(author identification number) and au_lname (author’s last name). A
second table contains title information about books, including a
column (au_id) that gives the ID number of the book’s author. You
might join the authors table and the titles table, testing for equality of
the values in the au_id columns of each table. Whenever there is a
match, a new row—containing columns from both tables—is created
and displayed as part of the result of the join. Joins are often
combined with projections and selections so that only selected
columns of selected matching rows are displayed.

Compiled Objects

Adaptive Server uses compiled objects to contain vital information
about each database and to help you access and manipulate data. A
compiled object is any object that requires entries in the sysprocedures
table, including:

• Check constraints

• Defaults

• Rules

• Stored procedures

• Extended stored procedures

• Triggers

• Views



1-4 Introduction

Overview of Adaptive Server and Its Components Adaptive Server Enterprise Release 11.5.x

Compiled objects are created from source text, the SQL statements
that describe and define the compiled object. When a compiled object
is created, Adaptive Server:

1. Parses the source text, catching any syntactic errors, to generate
a parsed tree.

2. Normalizes the parsed tree to create a normalized tree, which
represents the user statements in a binary tree format. This is the
compiled object.

3. Stores the compiled object in the sysprocedures table.

4. Stores the source text in the syscomments table.

Saving Source Text

In Adaptive Server release 11.5 and in SQL Server releases prior to
that release, the source text was saved in syscomments only so that it
could be returned to a user who executed sp_helptext. Because this was
the only purpose of saving the text, users often deleted the source
text from the syscomments table to save disk space and to remove
confidential information from this public area. However, you should
not delete the source text because this may pose a problem for future
upgrades of Adaptive Server. If you have removed the source text
from syscomments, use the procedures in this section to restore the
source text.

Restoring Source Text

If a compiled object does not have matching source text in the
syscomments table, you can restore the source text to syscomments
using any of the following methods:

• Load the source text from a backup.

• Recreate the source text manually

• Reinstall the application that created the compiled object

Verifying and Encrypting Source Text

Adaptive Server release 11.5 provides functionality that allows you
to verify the existence of source text, and encrypt the text if you



Transact-SQL User’s Guide 1-5

Adaptive Server Enterprise Release 11.5.x Naming Conventions

choose. Use the following commands when you are working with
source text:

• sp_checksource – verifies that source text is present in syscomments
for each compiled object.

• sp_hidetext – encrypts the source text of a compiled object in the
syscomments table to prevent casual viewing.

• sp_helptext – displays the source text if it is present in syscomments,
or notifies you of missing source text.

• dbcc checkcatalog – notifies you of missing source text.

Naming Conventions

A SQL statement must follow precise syntactical and structural rules,
and may include only SQL keywords, identifiers (names of
databases, tables, or other database objects), operators, and
constants. The characters that can be used for each part of a SQL
statement vary from installation to installation and are determined in
part by definitions in the default character set that Adaptive Server
uses.

For example, the characters allowed for the SQL language, such as
SQL keywords, special characters, and Transact-SQL extensions, are
more limited than the characters allowed for identifiers. The set of
characters which may be used for data is much larger and includes
all the characters that can be used for the SQL language or for
identifiers.

Figure 1-1 shows the relationship among the sets of characters
allowed for SQL keywords, identifiers, and data.

Figure 1-1: Characters used for different parts of SQL statements

SQL SQL

SQL data characters

language identifiers



1-6 Introduction

Naming Conventions Adaptive Server Enterprise Release 11.5.x

The sections that follow describe the sets of characters that can be
used for each part of a statement. The section on identifiers also
describes naming conventions for database objects.

SQL Data Characters

The set of SQL data characters is the larger set from which both SQL
language characters and identifier characters are taken. Any
character in Adaptive Server’s character set, including both single-
byte and multibyte characters, may be used for data values.

SQL Language Characters

SQL keywords, Transact-SQL extensions, and special characters such
as the comparison operators > and <, can be represented only by 7-bit
ASCII values A–Z, a–z, 0–9, and the following ASCII characters:

Identifiers

Conventions for naming database objects apply throughout
Adaptive Server software and documentation. Identifiers can be up
to 30 bytes in length, whether or not multibyte characters are used.
The first character of an identifier must be declared as an alphabetic
character in the character set definition in use on Adaptive Server.

The @ sign or _(underscore character) can also be used. The @ sign as
the first character of an identifier indicates a local variable.

Temporary table names must either begin with # (the pound sign) if
they are created outside tempdb or be preceded by “tempdb..”. Table
names for temporary tables that exist outside tempdb should not

Table 1-1: ASCII characters used in SQL

; (semicolon) ( (open parenthesis) ) (close parenthesis)
, (comma) : (colon) % (percent sign)
- (minus sign) ? (question mark) ' (single quote)
" (double quote) + (plus sign) _ (underscore)
* (asterisk) / (slash) (space)
< (less than operator) > (greater than operator) = (equals operator)
& (ampersand) | (vertical bar) ^ (circumflex)
[ (left bracket) ] (right bracket) \ (backslash)
@ (at sign) ~ (tilde) ! (exclamation point)
$ (dollar sign) # (number sign) . (period)



Transact-SQL User’s Guide 1-7

Adaptive Server Enterprise Release 11.5.x Naming Conventions

exceed 13 bytes in length, including the number sign, since Adaptive
Server gives them an internal numeric suffix.

After the first character, identifiers can include characters declared as
alphabetic, numeric, or the character $, #, @, _, ¥ (yen), or £ (pound
sterling). However, you cannot use two @@ symbols together at the
beginning of a named object, as in “@@myobject.” This naming
convention is reserved for global variables, which are system-
defined variables that Adaptive Server updates on an ongoing basis.

The case sensitivity of Adaptive Server is set when the server is
installed and can be changed by a System Administrator. To see the
setting for your server, execute this command:

sp_helpsort

On a server that is not case-sensitive, the identifiers MYOBJECT,
myobject, and MyObject (and all combinations of case) are considered
identical. You can create only one of these objects, but you can use
any of these combinations of case to refer to that object.

No embedded spaces are allowed in identifiers, and none of the SQL
reserved keywords can be used. The reserved words are listed in the
Adaptive Server Reference Manual.

You can use the function valid_name to determine if an identifier you
have created is acceptable to Adaptive Server. Here is the syntax:

select valid_name (" string ")

where string is the identifier you want to check. If string is not valid
as an identifier, Adaptive Server returns a 0 (zero). If string is a valid
identifier, Adaptive Server returns a number other than 0. Adaptive
Server returns a 0 if the characters used are illegal or if string is more
than 30 bytes long.

Using Multibyte Character Sets

In multibyte character sets, a wider range of characters is available
for use in identifiers. For example, on a server with the Japanese
language installed, the following types of characters can be used as
the first character of an identifier: Zenkaku or Hankaku Katakana,
Hiragana, Kanji, Romaji, Cyrillic, Greek, or ASCII.

Although Hankaku Katakana characters are legal in identifiers on
Japanese systems, they are not recommended for use in
heterogeneous systems. These characters cannot be converted
between the EUC-JIS and Shift-JIS character sets.



1-8 Introduction

Naming Conventions Adaptive Server Enterprise Release 11.5.x

The same is true for some 8-bit European characters. For example,
the character “Œ,” the OE ligature, is part of the Macintosh character
set (codepoint 0xCE). This character does not exist in the ISO 8859-1
(iso_1) character set. If “Œ” exists in data being converted from the
Macintosh to the ISO 8859-1 character set, it causes a conversion
error.

If an object identifier contains a character that cannot be converted,
the client loses direct access to that object.

Delimited Identifiers

Delimited identifiers are object names enclosed in double quotes.
Using delimited identifiers allows you to avoid certain restrictions
on object names. You can use double quotes to delimit table, view,
and column names; you cannot use them for other database objects.

Delimited identifiers can be reserved words, can begin with non-
alphabetic characters, and can include characters that would not
otherwise be allowed. They cannot exceed 28 bytes.

Before creating or referencing a delimited identifier, you must
execute:

set quoted_identifier on

This option allows Adaptive Server to recognize delimited
identifiers. Each time you use the quoted identifier in a statement,
you must enclose it in double quotes. For example:

create table "1one"(col1 char(3))
select * from "1one"
create table "include spaces" (col1 int)

➤ Note
Delimited identifiers cannot be used with bcp, may not be supported by all

front-end products, and can produce unexpected results when used with

system procedures.

While the quoted_identifier option is set on, do not use double quotes
around character or date strings; use single quotes instead.
Delimiting these strings with double quotes causes Adaptive Server
to treat them as identifiers. For example, to insert a character string
into col1 of 1one, use:

insert "1one"(col1) values ('abc')

not:



Transact-SQL User’s Guide 1-9

Adaptive Server Enterprise Release 11.5.x Naming Conventions

insert "1one"(col1) values ("abc")

To insert a single quote into a column, use two consecutive single
quotation marks. For example, to insert the characters “a’b” into col1,
use:

insert "1one"(col1) values('a''b')

Uniqueness and Qualification Conventions

The names of database objects need not be unique in a database.
However, column names and index names must be unique within a
table, and other object names must be unique for each owner within
a database. Database names must be unique on Adaptive Server.

If you try to create a column using a name that is not unique in the
table or to create another database object such as a table, a view, or a
stored procedure, with a name that you have already used in the
same database, Adaptive Server responds with an error message.

You can uniquely identify a table or column by adding other names
that qualify it, that is, the database name, the owner’s name, and, for
a column, the table name or view name. Each of these qualifiers is
separated from the next by a period:

database.owner.table_name.column_name

database.owner.view_name.column_name

For example, if the user “sharon” owns the authors table in the pubs2
database, the unique identifier of the city column in that table is:

pubs2.sharon.authors.city

The same naming syntax applies to other database objects. You can
refer to any object in a similar fashion:

pubs2.dbo.titleview

dbo.postalcoderule

If the quoted_identifier option of the set command is on, you can use
double quotes around individual parts of a qualified object name.
Use a separate pair of quotes for each qualifier that requires quotes.
For example, use:

database . owner ." table_name "." column_name "

rather than:

database . owner ." table_name . column_name "

The full naming syntax is not always allowed in create statements
because you cannot create a view, procedure, rule, default, or trigger



1-10 Introduction

Naming Conventions Adaptive Server Enterprise Release 11.5.x

in a database other than the one you are currently in. The naming
conventions are indicated in the syntax as:

[[ database .] owner .] object_name

or:

[ owner .] object_name

The default value for owner is the current user, and the default value
for database is the current database. When you reference an object in
SQL statements, other than create statements, without qualifying it
with the database name and owner name, Adaptive Server first looks
at all the objects you own, and then at the objects owned by the
Database Owner, whose name in the database is “dbo.” As long as
Adaptive Server is given enough information to identify an object,
you need not type every element of its name. Intermediate elements
can be omitted and their positions indicated by periods:

database .. table_name

You must include the starting element, in this case, database,
particularly if you are using this syntax when creating tables. If you
omit the starting element, you could, for example, create a table
named ..mytable. This naming convention prevents you from
performing certain actions on such a table, such as cursor updates.

When qualifying a column name and a table name in the same
statement, be sure to use the same naming abbreviations for each;
they are evaluated as strings and must match or an error is returned.
Here are two examples with different entries for the column name.
The second example does not run because the syntax for the column
name does not match the syntax for the table name.

select pubs2.dbo.publishers.city
from pubs2.dbo.publishers

city
-----------------------
Boston
Washington
Berkeley

select pubs2.sa.publishers.city
from pubs2..publishers

The column prefix "pubs2.sa.publishers" does not
match a table name or alias name used in the query.



Transact-SQL User’s Guide 1-11

Adaptive Server Enterprise Release 11.5.x Expressions in Adaptive Server

Identifying Remote Servers

You can execute stored procedures on a remote Adaptive Server,
with the results from the stored procedure printed on the terminal
that called the procedure. The syntax for identifying a remote server
and the stored procedure is:

[execute] server .[ database ].[ owner ]. procedure_name

You can omit the execute keyword when the remote procedure call is
the first statement in a batch. If other SQL statements precede the
remote procedure call, you must use execute or exec. You must give the
server name and the stored procedure name. If you omit the database
name, Adaptive Server looks for procedure_name in your default
database. If you give the database name, you must also give the
procedure owner’s name, unless you own the procedure or the
procedure is owned by the Database Owner.

The following statements execute the stored procedure byroyalty in the
pubs2 database located on the GATEWAY server:

See the System Administration Guide for information on setting up
Adaptive Server for remote access. A remote server name
(GATEWAY in the previous example) must match a server name in
your local Adaptive Server’s interfaces file. If the server name in
interfaces is in uppercase letters, you must use it in uppercase letters
in the remote procedure call.

Expressions in Adaptive Server

An expression is a combination of one or more constants, literals,
functions, column identifiers, and variables, separated by operators,
that returns a single value. Expressions can be of several types,
including arithmetic, relational, logical (or Boolean), and character
string. In some Transact-SQL clauses, a subquery can be used in an
expression. A case expression can be used in an expression.

Statement Notes

GATEWAY.pubs2.dbo.byroyalty
GATEWAY.pubs2..byroyalty

byroyalty is owned by the Database
Owner.

GATEWAY...byroyalty Use if pubs2 is the default database.

declare @var int
exec GATEWAY...byroyalty

Use when the statement is not the
first statement in a batch.



1-12 Introduction

Expressions in Adaptive Server Adaptive Server Enterprise Release 11.5.x

Use parentheses to group the elements in an expression. When
“expression” is given as a variable in a syntax statement, a simple
expression is assumed. “Logical expression” is specified when only a
logical expression is acceptable.

Arithmetic and Character Expressions

The general pattern for arithmetic and character expressions is:

{ constant |  column_name |  function | ( subquery )
| (case_expression)}
    [{ arithmetic_operator  |  bitwise_operator |
     string_operator |  comparison_operator }
{ constant | column_name |  function | ( subquery )
| case_expression}] ...

Operator Precedence

Operators have the following precedence levels, where 1 is the
highest level and 6 is the lowest:

1. unary (single argument) - + ~

2. * / %

3. binary (two argument) + - & | ^

4. not

5. and

6. or

When all operators in an expression are of the same level, the order
of execution is left to right. You can change the order of execution
with parentheses—the most deeply nested expression is handled
first.

Arithmetic Operators

Adaptive Server uses the following arithmetic operators:

Table 1-2: Arithmetic operators

Operator Meaning
+ Addition
– Subtraction
* Multiplication

  / Division



Transact-SQL User’s Guide 1-13

Adaptive Server Enterprise Release 11.5.x Expressions in Adaptive Server

Addition, subtraction, division, and multiplication can be used on
exact numeric, approximate numeric, and money type columns.

The modulo operator cannot be used on smallmoney, money, float or
real columns. Modulo finds the integer remainder after a division
involving two whole numbers. For example, 21 % 11 = 10 because 21
divided by 11 equals 1 with a remainder of 10.

When you perform arithmetic operations on mixed datatypes (for
example, float and int) Adaptive Server follows specific rules for
determining the type of the result. See Chapter 6, “Using and
Creating Datatypes,” for more information.

Bitwise Operators

The bitwise operators are a Transact-SQL extension for use with
integer type data. These operators convert each integer operand into
its binary representation and then evaluate the operands column by
column. A value of 1 corresponds to true; a value of 0 corresponds to
false.

The following tables summarize the results for operands of 0 and 1.
If either operand is NULL, the bitwise operator returns NULL:

% Modulo (Transact-SQL extension)

Table 1-3: Truth tables for bitwise operations

& (and) 1 0
1 1 0
0 0 0

 | (or) 1 0
1 1 1
0 1 0

^ (exclusive or) 1 0
1 0 1
0 1 0

~ (not)
1 FALSE
0 0

Table 1-2: Arithmetic operators (continued)

Operator Meaning



1-14 Introduction

Expressions in Adaptive Server Adaptive Server Enterprise Release 11.5.x

The following examples use two tinyint arguments, A = 170
(10101010 in binary form) and B = 75 (01001011 in binary form.

The String Concatenation Operator

The string operator + can concatenate two or more character or
binary expressions. For example:

1. select Name = (au_lname + ", " + au_fname)
from authors

Displays author names under the column heading Name in last-
name first-name order, with a comma after the last name; for
example, “Bennett, Abraham.”

2. select "abc" + "" + "def"

Returns the string “abc def”. The empty string is interpreted as a
single space in all char, varchar, nchar, nvarchar, and text
concatenation, and in varchar insert and assignment statements.

When concatenating non-character, non-binary expressions, use
convert:

Table 1-4: Examples of bitwise operations

Operation Binary
Form Result Explanation

(A & B) 10101010
01001011
------------

00001010

10 Result column equals 1 if both A
and B are 1. Otherwise, result
column equals 0.

(A | B) 10101010
01001011
------------

11101011

235 Result column equals 1 if either A or
B, or both, is 1. Otherwise, result
column equals 0

(A ^ B) 10101010
01001011
------------

11100001

225 Result column equals 1 if either A or
B, but not both, is 1

(~A) 10101010
------------

01010101

85 All 1’s are changed to 0’s and all
0’s to 1’s



Transact-SQL User’s Guide 1-15

Adaptive Server Enterprise Release 11.5.x Expressions in Adaptive Server

select "The date is " +
    convert(varchar(12), getdate())

The Comparison Operators

Adaptive Server uses the following comparison operators:

In comparing character data, < means closer to the beginning of the
server’s sort order and > means closer to the end of the sort order.
Uppercase and lowercase letters are equal in a sort order that is not
case sensitive. Use sp_helpsort to see the sort order for your Adaptive
Server. Trailing blanks are ignored for comparison purposes. So, for
example, “Dirk” is the same as “Dirk  ”.

In comparing dates, < means earlier and > means later.

Put single or double quotes around all character and datetime data
used with a comparison operator:

= "Bennet"
> "May 22 1947"

Nonstandard Operators

The following operators are Transact-SQL extensions:

• Modulo operator: %

• Negative comparison operators: !>, !<, !=

• Bitwise operators: ~, ^, |, &

• Join operators: *= and =*

Table 1-5: Comparison operators

Operator Meaning
= Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
<> Not equal to
!= Not equal to (Transact-SQL extension)
!> Not greater than (Transact-SQL extension)
!< Not less than (Transact-SQL extension)



1-16 Introduction

Expressions in Adaptive Server Adaptive Server Enterprise Release 11.5.x

Comparing Character Expressions

Adaptive Server treats character constant expressions as varchar. If
they are compared with non-varchar variables or column data, the
datatype precedence rules are used in the comparison (that is, the
datatype with lower precedence is converted to the datatype with
higher precedence). If implicit datatype conversion is not supported,
you must use the convert function.

Comparison of a char expression to a varchar expression follows the
datatype precedence rule; the “lower” datatype is converted to the
“higher” datatype. All varchar expressions are converted to char (that
is, trailing blanks are appended) for the comparison.

Using the Empty String

The empty string (“”) or (‘’) is interpreted as a single blank in insert or
assignment statements on varchar data. In concatenation of varchar,
char, nchar, nvarchar data, the empty string is interpreted as a single
space; for example:

"abc" + "" + "def"

is stored as “abc def”. The empty string is never evaluated as NULL.

Including Quotation Marks in Character Expressions

There are two ways to specify literal quotes within a char or varchar
entry. The first method is to double the quotes. For example, if you
begin a character entry with a single quote, but you want to include
a single quote as part of the entry, use two single quotes:

'I don''t understand.'

With double quotes:

"He said, ""It’s not really confusing."""

The second method is to enclose a quote in the opposite kind of
quotation mark. In other words, surround an entry containing a
double quote with single quotes (or vice versa). Here are some
examples:

'George said, "There must be a better way."'
"Isn’t there a better way?"
'George asked, "Isn”t there a better way?"'



Transact-SQL User’s Guide 1-17

Adaptive Server Enterprise Release 11.5.x Expressions in Adaptive Server

Relational and Logical Expressions

A logical expression or relational expression returns TRUE, FALSE,
or UNKNOWN. The general patterns are:

expression comparison_operator  [any | all] expression

expression [not] in expression

[not] exists expression

expression [not] between expression  and expression

expression [not] like " match_string "
[escape "escape_character "]

not expression like " match_string "
[escape "escape_character "]

expression  is [not] null

not logical_expression

logical_expression {and | or} logical_expression

Using any, all, and in

any is used with <, >, or = and a subquery. It returns results when any
value retrieved in the subquery matches the value in the where or
having clause of the outer statement. all is used with < or > and a
subquery. It returns results when all values retrieved in the subquery
are less than (<) or greater than (>) the value in the where or having
clause of the outer statement. See Chapter 5, “Subqueries: Using
Queries Within Other Queries,” for more information.

in returns results when any value returned by the second expression
matches the value in the first expression. The second expression
must be a subquery or a list of values enclosed in parentheses. in is
equivalent to = any.

Connecting Expressions with and and or

and connects two expressions and returns results when both are true.
or connects two or more conditions and returns results when either of
the conditions is true.

When more than one logical operator is used in a statement, and is
evaluated before or. You can change the order of execution with
parentheses.



1-18 Introduction

Transact-SQL Extensions Adaptive Server Enterprise Release 11.5.x

Table 1-6 shows the results of logical operations, including those that
involve null values:

The result UNKNOWN indicates that one or more of the expressions
evaluates to NULL, and that the result of the operation cannot be
determined to be either TRUE or FALSE.

Transact-SQL Extensions

Transact-SQL enhances the power of SQL and minimizes the
occasions on which users must resort to a programming language to
accomplish a desired task. Transact-SQL goes beyond the ISO
standards and the many commercial versions of SQL.

Most of the Transact-SQL enhancements (known as extensions) are
summarized here. Other extensions, such as the Transact-SQL
administration tools, are described in their respective manuals.

Table 1-6: Truth tables for logical expressions

and TRUE FALSE NULL

TRUE TRUE FALSE UNKNOWN

FALSE FALSE FALSE FALSE

NULL UNKNOWN FALSE UNKNOWN

or TRUE FALSE NULL

TRUE TRUE TRUE TRUE

FALSE TRUE FALSE UNKNOWN

NULL TRUE UNKNOWN UNKNOWN

not

TRUE FALSE

FALSE TRUE

NULL UNKNOWN



Transact-SQL User’s Guide 1-19

Adaptive Server Enterprise Release 11.5.x Transact-SQL Extensions

The compute Clause

The Transact-SQL compute clause extension is used with the row
aggregate functions, sum, max, min, avg, and count, to calculate
summary values. The results of a query that includes a compute clause
are displayed with both detail and summary rows, and look like a
report that most DBMSs can produce only with a report generator.
compute displays summary values as additional rows in the results,
instead of as new columns. The compute clause is covered in Chapter
3, “Summarizing, Grouping, and Sorting Query Results.”

Control-of-Flow Language

Transact-SQL provides control-of-flow language that can be used as
part of any SQL statement or batch. These constructs are available:
begin...end, break, continue, declare, goto label, if...else, print, raiserror, return,
waitfor, and while. Local variables can be defined with declare and
assigned values. A number of predefined global variables are
supplied by the system.

Transact-SQL also supports case expressions, which includes the
keywords case, when, then, coalesce, nullif. case expressions replace the if
statements of standard SQL. case expressions are allowed anywhere a
value expression is used.

Stored Procedures

A stored procedure is a named collection of SQL statements and
optional control-of-flow statements stored under a name. One of the
most important Transact-SQL extensions is the ability to create
stored procedures. Stored procedures can combine almost any SQL
statements using control-of-flow language. The creator of a stored
procedure can also define parameters to be supplied when the stored
procedure is executed.

The ability to write your own stored procedures greatly enhances the
power, efficiency, and flexibility of the SQL database language. Since
the execution plan is saved after stored procedures are run, stored
procedures can subsequently run much faster than standalone
statements.

Adaptive Server-supplied stored procedures, called system
procedures, are provided for your use in Adaptive Server system
administration. Chapter 14, “Using Stored Procedures,” discusses
the system procedures and explains how to create stored procedures.



1-20 Introduction

Transact-SQL Extensions Adaptive Server Enterprise Release 11.5.x

The system procedures are discussed in detail in the Adaptive Server
Reference Manual.

Users can execute stored procedures on remote servers. Other
Transact-SQL extensions support return values from stored
procedures, user-defined return status from stored procedures, and
the ability to pass parameters from a procedure to its caller.

Extended Stored Procedures

An extended stored procedure (ESP) has the interface of a stored
procedure, but instead of containing SQL statements and control-of-
flow statements, it executes procedural language code that has been
compiled into a dynamic link library (DLL).

The procedural language in which an ESP function is written can be
any language capable of calling C language functions and
manipulating C datatypes.

ESPs allow Adaptive Server to perform a task outside the RDBMS in
response to an event occurring within the database. For example, an
email notification or network-wide broadcast could be sent in
response to an event occurring within the RDBMS.

There are some Adaptive Server-supplied ESPs, called system
extended stored procedures. One of these, xp_cmdshell, allows you to
execute an operating system command from within Adaptive
Server. Chapter 15, “Using Extended Stored Procedures,” describes
ESPs in detail. See also the Adaptive Server Reference Manual for more
information on the system extended stored procedures.

ESPs are implemented by an Open Server application called XP
Server, which runs on the same machine as Adaptive Server.
Adaptive Server and XP Server communicate through remote
procedure calls. XP Server is automatically installed when Adaptive
Server is installed.

Triggers

A trigger is a stored procedure that instructs the system to take any
number of actions when a specified change is attempted. By
preventing incorrect, unauthorized, or inconsistent changes to data,
triggers help maintain the integrity of a database.

Triggers can also protect referential integrity—to enforce rules about
the relationships among data in different tables. Triggers go into



Transact-SQL User’s Guide 1-21

Adaptive Server Enterprise Release 11.5.x Transact-SQL Extensions

effect when a user attempts to modify data with an insert, delete, or
update command.

Triggers can call local or remote stored procedures, and triggers can
call other triggers. Triggers can nest to a depth of 16 levels.

Defaults and Rules

Transact-SQL provides keywords for maintaining entity integrity (to
ensure that a value is supplied for every column that requires a
value) and domain integrity (to ensure that each value in a column
belongs to the set of legal values for that column). Triggers, described
earlier, help maintain referential integrity. Defaults and rules define
integrity constraints that come into play during the entry and
modification of data.

A default is a value linked to a particular column or datatype, and
inserted by the system if no value is provided during data entry.
Rules are user-defined integrity constraints linked to a particular
column or datatype, and enforced at data entry time. Rules and
defaults are discussed in Chapter 12, “Defining Defaults and Rules
for Data.”

Error Handling and set Options

A number of error handling techniques are available to the Transact-
SQL programmer, including the ability to capture return status from
stored procedures, define customized return values from stored
procedures, pass parameters from a procedure to its caller, and get
reports from global variables such as @@error. The raiserror and print
statements, in combination with the control-of-flow language, can
direct error messages to the user of a Transact-SQL application.
Developers can localize print and raiserror to use different languages.

set options can customize the display of results, show processing
statistics, and provide other diagnostic aids for debugging your
Transact-SQL programs. All set options except showplan and
char_convert take effect immediately.

The following paragraphs list the available set options; for more
information, refer to the Adaptive Server Reference Manual.

• The parseonly, noexec, prefetch, showplan, rowcount, nocount and
tablecount options control the way a query is executed. The statistics
options display performance statistics after each query.
flushmessage determines when Adaptive Server returns messages



1-22 Introduction

Transact-SQL Extensions Adaptive Server Enterprise Release 11.5.x

to the user. See the Performance and Tuning Guide for more
information.

• arithabort determines whether Adaptive Server aborts queries with
arithmetic overflow and numeric truncation errors. arithignore
determines whether Adaptive Server prints a warning message if
a query results in an arithmetic overflow. For more information,
see “Arithmetic Errors” on page 1-27.

• offsets and procid are used in DB-Library™ to interpret results from
Adaptive Server.

• datefirst, dateformat, and language affect date functions, date order,
and message display. char_convert controls character set
conversion between Adaptive Server and a client.

• textsize controls the size of text or image data returned with a select
statement. See “Text Functions Used for text and image Data” on
page 10-17 for more information.

• cursor rows and close on endtran affect the way Adaptive Server
handles cursors. See “Fetching Data Rows Using Cursors” on
page 17-13 for more information.

• identity_insert allows or prohibits inserts that affect a table’s
IDENTITY column. See “Gaps Due to Insertions, Deletions,
Identity Grab Size, and Rollbacks” on page 7-22 for more
information.

• chained and transaction isolation level control how Adaptive Server
handles transactions. For more information, see “Selecting the
Transaction Mode and Isolation Level” on page 18-13.

• self_recursion allows Adaptive Server to handle triggers that cause
themselves to fire. For more information, see “Trigger Self-
Recursion” on page 16-25.

• ansinull, ansi_permissions, and fipsflagger control whether Adaptive
Server flags the use of nonstandard SQL. string_rtruncation controls
whether Adaptive Server to raise an exception error when
truncating a char or nchar string. See “Compliance to ANSI
Standards” on page 1-24.

• quoted_identifier controls whether Adaptive Server treats character
strings enclosed in double quotes as identifiers. See “Delimited
Identifiers” on page 1-8 for more information.

• role controls the roles granted to you. For information about roles,
see the Security Features User’s Guide.



Transact-SQL User’s Guide 1-23

Adaptive Server Enterprise Release 11.5.x Transact-SQL Extensions

Additional Adaptive Server Extensions to SQL

Other unique or unusual features of Transact-SQL include:

• The following extensions to SQL search conditions: modulo
operator (%), negative comparison operators (!>, !<, and !=),
bitwise operators (–, ^, |, and &), join operators (*= and =*),
wildcard characters ([ ] and -), and the not operator (^). See
Chapter 2, “Queries: Selecting Data from a Table.”

• Fewer restrictions on the group by clause and the order by clause. See
Chapter 3, “Summarizing, Grouping, and Sorting Query
Results.”

• Subqueries, which can be used almost anywhere an expression is
allowed. See Chapter 5, “Subqueries: Using Queries Within Other
Queries.”

• Temporary tables and other temporary database objects, which
exist only for the duration of the current work session, and
disappear thereafter. See Chapter 7, “Creating Databases and
Tables.”

• User-defined datatypes built on Adaptive Server-supplied
datatypes. See Chapter 6, “Using and Creating Datatypes,” and
Chapter 12, “Defining Defaults and Rules for Data.”

• The ability to insert data from a table into that same table. See
Chapter 8, “Adding, Changing, and Deleting Data.”

• The ability to extract data from one table and put it into another
with the update command. See Chapter 8, “Adding, Changing,
and Deleting Data.”

• The ability to remove data based on data in other tables using the
join in a delete statement. See Chapter 8, “Adding, Changing, and
Deleting Data.”

• A fast way to delete all rows in a specified table and reclaim the
space they took up with the truncate table command. See Chapter 8,
“Adding, Changing, and Deleting Data.”

• IDENTITY columns, which provide system-generated values
that uniquely identify each row within a table. See Chapter 8,
“Adding, Changing, and Deleting Data.”

• Updates and selections through views. Unlike most other
versions of SQL, Transact-SQL places no restrictions on retrieving
data through views, and few restrictions on updating data
through views. See Chapter 9, “Views: Limiting Access to Data.”



1-24 Introduction

Compliance to ANSI Standards Adaptive Server Enterprise Release 11.5.x

• Dozens of built-in functions. See Chapter 10, “Using the Built-In
Functions in Queries.”

• Options to the create index command for fine-tuning aspects of
performance determined by indexes, and controlling the
treatment of duplicate keys and rows. See Chapter 11, “Creating
Indexes on Tables.”

• User control over what happens when you attempt to enter
duplicate keys in a unique index, or duplicate rows in a table. See
Chapter 11, “Creating Indexes on Tables.”

• Bitwise operators for use with integer and bit type columns. See
“Bitwise Operators” on page 2-8 and Chapter 6, “Using and
Creating Datatypes.”

• Support for text and image datatypes. See Chapter 6, “Using and
Creating Datatypes.”

• The ability to gain access to both Sybase and non-Sybase
databases. With the Component Integration Services feature, you
can accomplish the following types of actions between tables in
remote, heterogeneous servers: access remote tables as if they
were local, perform joins, transfer data between tables, maintain
referential integrity, provide applications such as PowerBuilder®
with transparent access to heterogeneous data, and use native
remote server capabilities. For information on using Component
Integration Services, see the Component Integration Services User’s
Guide.

Compliance to ANSI Standards

The progression of standards for relational database management
systems is ongoing. These standards have been and are being
adopted by ISO and several national standards bodies. SQL86 was
the first of these standards. This was replaced by SQL89, which in
turn was replaced by SQL92, which is the current standard. SQL92
defines three levels of conformance: Entry, Intermediate, and Full. In
the United States, the National Institute for Standards and
Technology (NIST) has defined the Transitional level, which falls
between the Entry and Intermediate levels.

Certain behaviors defined by the standards are not compatible with
existing SQL Server/Adaptive Server applications. Transact-SQL
provides set options that allow you to toggle these behaviors.

Compliant behavior is enabled by default for all Embedded SQL™
precompiler applications. Other applications needing to match SQL



Transact-SQL User’s Guide 1-25

Adaptive Server Enterprise Release 11.5.x Compliance to ANSI Standards

standard behavior can use option settings in Table 1-2 for entry level
SQL92 compliance. For more information on setting these options,
see set in the Adaptive Server Reference Manual.

The following sections describe the differences between standard
behavior and the default Transact-SQL behavior.

FIPS Flagger

For customers writing applications that must conform to the
standard, Adaptive Server provides a set fipsflagger option. When this
option is turned on, all commands containing Transact-SQL
extensions that are not allowed in entry-level SQL92 generate an
informational message.

Chained Transactions and Isolation Levels

Adaptive Server provides SQL standard-compliant “chained”
transaction behavior as an option. In chained mode, all data retrieval
and modification commands (delete, insert, open, fetch, select, and update)
implicitly begin a transaction. Since such behavior is incompatible
with many Transact-SQL applications, Transact-SQL style (or
“unchained”) transactions remain the default.

Table 1-7: set options for ANSI compliance

Option Setting

ansi_permissions on

ansinull on

arithabort off

arithabort numeric_truncation on

arithignore off

chained on

close on endtran on

fipsflagger on

quoted_identifier on

string_rtruncation on

transaction isolation level 3



1-26 Introduction

Compliance to ANSI Standards Adaptive Server Enterprise Release 11.5.x

Chained transaction mode can be initiated with the new set chained
option. The set transaction isolation level option controls transaction
isolation levels. See Chapter 18, “Transactions: Maintaining Data
Consistency and Recovery,” for more information.

Identifiers

To be entry-level SQL92 compliant, identifiers must not:

• Begin with a pound sign (#)

• Have more than 18 characters

• Contain lowercase letters

Delimited Identifiers

Adaptive Server supports delimited identifiers for table, view, and
column names. Delimited identifiers are object names enclosed
within double quotation marks. Using them allows you to avoid
certain restrictions on object names.

Use the set quoted_identifier option to recognize delimited identifiers.
When this option is on, all characters enclosed within double quotes
are treated as identifiers. Because this behavior is incompatible with
many existing applications, the default setting for this option is off.

SQL Standard-Style Comments

In Transact-SQL, comments are delimited by “/*” and “*/”, and can
be nested. Transact-SQL also supports SQL standard-style
comments, which consist of any string beginning with two
connected minus signs, a comment, and a terminating new line:

select "hello" -- this is a comment

The Transact-SQL “/*” and “*/” comment delimiters are fully
supported, but “--” within Transact-SQL comments is not
recognized.

Right Truncation of Character Strings

The string_rtruncation set option controls silent truncation of character
strings for SQL standard compatibility. Set this option on to prohibit
silent truncation and enforce SQL standard behavior.



Transact-SQL User’s Guide 1-27

Adaptive Server Enterprise Release 11.5.x Compliance to ANSI Standards

Permissions Required for update and delete Statements

The ansi_permissions set option determines what permissions are
required for delete and update statements. When this option is on,
Adaptive Server uses the SQL92 more stringent permissions
requirements for these statements. Because this behavior is
incompatible with many existing applications, the default setting for
this option is off.

Arithmetic Errors

The arithabort and arithignore set options allow compliance with the
SQL92 standard as follows:

• arithabort arith_overflow specifies behavior following a divide-by-
zero error or a loss of precision. The default setting, arithabort
arith_overflow on, rolls back the entire transaction in which the error
occurs. If the error occurs in a batch that does not contain a
transaction, arithabort arith_overflow on does not roll back earlier
commands in the batch, but Adaptive Server does not execute
statements in the batch that follow the error-generating
statement.

If you set arithabort arith_overflow off, Adaptive Server aborts the
statement that causes the error but continues to process other
statements in the transaction or batch.

• arithabort numeric_truncation specifies behavior following a loss of
scale by an exact numeric type. The default setting, on, aborts the
statement that causes the error but continues to process other
statements in the transaction or batch. If you set arithabort
numeric_truncation off, Adaptive Server truncates the query results
and continues processing. For compliance to the SQL92 standard,
enter set arithabort numeric_truncation on.

• arithignore arith_overflow determines whether Adaptive Server
displays a message after a divide-by-zero error or a loss of
precision. The default setting, off, displays a warning message
after these errors. Setting arithignore arith_overflow on suppresses
warning messages after these errors. For compliance to the
SQL92 standard, enter set arithignore off.



1-28 Introduction

How to Use Transact-SQL with the isql Utility Adaptive Server Enterprise Release 11.5.x

Synonymous Keywords

Several keywords added for SQL standard compatibility are
synonymous with existing Transact-SQL keywords.

Treatment of Nulls

The set option ansinull determines whether or not evaluation of null-
valued operands in SQL equality (=) or inequality (!=) comparisons
and aggregate functions is SQL standard-compliant. This option
does not affect how Adaptive Server evaluates null values in other
kinds of SQL statements such as create table.

How to Use Transact-SQL with the isql Utility

You can use Transact-SQL directly from the operating system, with
the standalone utility program isql.

To use Transact-SQL, you must set up an account, or login, on
Adaptive Server. To use isql, type a command similar to the following
at your operating system prompt:

isql -Uhoratio -Pmonkeybrains -Shaze -w300

where “horatio” is the user, “monkeybrains” is the password, and
“haze” is the name of the Adaptive Server you are connecting to. The
-w parameter displays isql output at a width of 300 characters. Login
names and passwords are case-sensitive.

Table 1-8: ANSI-compatible keyword synonyms

Current Syntax Additional Syntax

commit tran, commit transaction
rollback tran, rollback transaction

commit work
rollback work

any some

grant all grant all privileges

revoke all revoke all privileges

max (expression) max ([all | distinct]) expression

min (expression) min ([all | distinct]) expression

user_name() built-in function user keyword



Transact-SQL User’s Guide 1-29

Adaptive Server Enterprise Release 11.5.x How to Use Transact-SQL with the isql Utility

After you start isql, this is what you will see:

1>

At this point, you can start issuing Transact-SQL commands.

For detailed information about using isql, see the Utility Programs
manual for your platform.

To connect to a non-Sybase database using Component Integration
Services, use the connect to command. For more information, see the
Component Integration Services User’s Guide. See also connect
to...disconnect in the Adaptive Server Reference Manual.

Choosing a Password

Once you have logged in, you can change your password at any time
with the system procedure sp_password. Here is how to change the
password “flyingbricks” to “ignatz”:

1> sp_password flyingbricks, ignatz
2> go

The word “go” appears on a line by itself and must not be preceded
by blanks or tabs. It is the command terminator; it lets Adaptive
Server know that you have finished typing, and you are ready for
your command to be executed.

Your password is the first line of defense against Adaptive Server
access by unauthorized people. Adaptive Server passwords must be
at least 6 bytes long and can contain any printable characters. When
you are creating your own password, choose one that cannot be
guessed. Do not use personal information, names of pets or loved
ones, or words that appear in the dictionary.

The most difficult passwords to guess are those that combine
uppercase and lowercase letters or numbers and letters. Once you
have selected a password, protecting it is your responsibility. Never
give anyone your password and never write it down where anyone
can see it.

For more information on sp_password, see the Adaptive Server Reference
Manual.

Default Databases

When your Adaptive Server account was created, you may have
been assigned a default database, to which you are connected when



1-30 Introduction

How to Use Transact-SQL with the isql Utility Adaptive Server Enterprise Release 11.5.x

you log in. For example, your default database might be pubs2, the
sample database. If you were not assigned a default database, you
are connected to the master database.

You can change your default database to any database that you have
permission to use, or to any database that allows guests. Any user
with a Adaptive Server login, that is listed in master..syslogins, can be
a guest. To change your default database, use the system procedure
sp_modifylogin, described in the Adaptive Server Reference Manual.

In any case, you can make sure you are in pubs2 by giving this
command:

1> use pubs2
2> go

With a couple of exceptions, the examples of the Transact-SQL
statements shown in the remainder of this manual do not include the
line prompts used by the isql utility, nor do they include the
terminator go. For more details on the isql utility, see the the Utility
Programs manual for your platform.

Using the pubs2 and pubs3 Sample Database

The pubs2 sample database is used for most of the examples in this
manual, except for examples, where noted, that use the pubs3
database. You can try any of the examples on your own workstation.

The query results you see on your screen may not look exactly as
they do in this manual. That is because some of the examples here
have been reformatted (for example, the columns have been
realigned) for visual clarity or to take up less space on the page.

You may need to get additional permissions to change the sample
database using create or data modification statements. These
permissions can be granted by a System Administrator. If you do
change the sample database, be sure to return it to its original state
for the sake of future users and uses. Ask for help from a System
Administrator if you need help restoring the sample databases.

What Is in the Sample Databases?

The sample database, pubs2, contains these tables: publishers, authors,
titles, titleauthor, roysched, sales, salesdetail, stores, discounts, au_pix, and
blurbs. The pubs3 sample database, which includes the
store_employees table, has most of the same tables as pubs2, except for
au_pix. pubs3 is an updated version of pubs2; it is useful for referential



Transact-SQL User’s Guide 1-31

Adaptive Server Enterprise Release 11.5.x How to Use Transact-SQL with the isql Utility

integrity examples, and its tables are slightly different from the tables
defined in pubs2.

The following briefly describes each table:

• publishers contains the identification numbers, names, cities, and
states of three publishing companies.

• authors contains an identification number, first and last name,
address information, and contract status for each author.

For each book, the titles table contains its identification number,
name, type, identification number of the publisher, price,
advance, royalty, year-to-date sales, comments, and publication
date.

• titleauthor links the titles and authors tables together. It contains
each book’s title ID, author ID, author order, and the royalty split
among the authors of a book.

• roysched lists the unit sales ranges and the royalty connected with
each range. The royalty is some percentage of the net receipts
from sales.

• sales records the store ID, order number and date of book sales. It
acts as the master table for the detail rows in salesdetail.

• salesdetail records the bookstore sales of titles in the titles table.

• stores lists bookstores by store ID.

• store_employees lists employees for the stores described in the
stores table.

• discounts lists three types of discounts for bookstores.

• au_pix contains pictures of the authors in binary form using the
image datatype. au_pix is in pubs2 only.

• blurbs contains long book descriptions in the text datatype.

The pubs2 database is illustrated in Appendix A, “The pubs2
Database.” pubs3 is illustrated in Appendix B, “The pubs3
Database.”



1-32 Introduction

How to Use Transact-SQL with the isql Utility Adaptive Server Enterprise Release 11.5.x



Part 1: Basic Concepts





Transact-SQL User’s Guide 2-1

2 Queries: Selecting Data from a Table2.

The select command queries data from the database. You can use it to
retrieve a subset of the rows in one or more tables and to retrieve a
subset of the columns in one or more tables.

This chapter discusses:

• What Are Queries?   2-1

• Choosing Columns in a Query   2-4

• Eliminating Duplicate Query Results with distinct   2-16

• Specifying Tables: The from Clause   2-18

• Selecting Rows: The where Clause   2-19

This chapter focuses on basic single-table select statements.
Advanced uses of select are described later in this manual.

What Are Queries?

A query requests data from the database and receives the results.
This process is also known as data retrieval. All SQL queries are
expressed using the select statement. You can use it for selections,
which retrieve a subset of the rows in one or more tables, and you can
use it for projections, which retrieve a subset of the columns in one
or more tables.

A simplified version of the select statement is:

select select_list
from table_list
where search_conditions

The select clause specifies the columns you want to retrieve. The from
clause specifies the tables to pull the columns from. The where clause
specifies which rows in the tables you want to see. For example, the
following select statement finds the first and the last names of writers
living in Oakland from the authors table.

select au_fname, au_lname
from authors
where city = "Oakland"

select statement results appear in columnar format, like this:



2-2 Queries: Selecting Data from a Table

What Are Queries? Adaptive Server Enterprise Release 11.5.x

 au_fname        au_lname
 --------------  -----------
 Marjorie        Green
 Dick            Straight
 Dirk            Stringer
 Stearns         MacFeather
 Livia           Karsen

(5 rows affected)

If you are running parallel queries, the results can appear in a
different order than with serial queries. For more information on
running queries in parallel, see “When Parallel Query Results Can
Differ” in Chapter 13, “Introduction to Parallel Query Processing,” in
the Performance and Tuning Guide.

select Syntax

The select syntax is both simpler and more complex than the example
shown in the previous section. It is simpler in that the select clause is
the only required clause in a select statement. The from clause is almost
always included, but technically it is necessary only in select
statements that retrieve data from tables. The where clause is optional,
as are all other clauses. It is more complex because the full syntax of
the select statement includes these phrases and keywords:

select [all | distinct] select_list
[into [[ database .] owner .] table_name ]
[from [[ database .] owner .]{ view_name | table_name
    [(index { index_name  | table_name  }
        [parallel [ degree_of_parallelism ]]
        [prefetch size  ][lru|mru])]}
    [holdlock | noholdlock] [shared]
 [,[[ database .] owner .]{ view_name | table_name
    [(index { index_name  | table_name  }
        [parallel [ degree_of_parallelism ]]
        [prefetch size  ][lru|mru])]}
     [holdlock | noholdlock] [shared]]... ]

[where search_conditions ]

[group by [all] aggregate_free_expression
    [, aggregate_free_expression ]... ]
[having search_conditions ]

[order by
{[[[ database .] owner .]{ table_name .| view_name .}]



Transact-SQL User’s Guide 2-3

Adaptive Server Enterprise Release 11.5.x What Are Queries?

column_name  |  select_list _number |  expression }
        [asc | desc]
[,{[[[ database .] owner .]{ table_name | view_name .}]
    column_name  |  select_list_number  | expression }
        [asc | desc]]...]

[compute row_aggregate ( column_name )
        [, row_aggregate ( column_name )]...
    [by column_name  [, column_name ]...]]

[for {read only | update [of column_name_list ]}]

[at isolation {read uncommitted | read committed |
     serializable}]

[for browse]

Use the clauses in a select statement in the order shown above. For
example, if the statement includes a group by clause and an order by
clause, the group by clause must come before the order by clause.

As explained in the section “Identifiers” on page 1-6, qualify the
names of database objects if there is ambiguity about which object is
being referred to. For example, if several columns are called name,
you may have to qualify name with the database name, owner name,
or table name, for example:

select au_lname from pubs2.dbo.authors

Since the examples in this chapter involve single-table queries,
column names in syntax models and examples are usually not
qualified with the names of the tables, owners, or databases to which
they belong. These elements are left out for readability; it is never
wrong to include qualifiers. The remaining sections in this chapter
analyze the syntax of the select statement in more detail.

This chapter describes only some of the clauses and keywords
included in the syntax of the select command. The following clauses
are discussed in other chapters, as follows:

• group by, having, order by, and compute are described in Chapter 3,
“Summarizing, Grouping, and Sorting Query Results.”

• into is described in Chapter 7, “Creating Databases and Tables.”

• at isolation is described in Chapter 18, “Transactions: Maintaining
Data Consistency and Recovery.”

The holdlock, noholdlock, and shared keywords (which deal with locking
in Adaptive Server) and the index clause are described in the
Performance and Tuning Guide. For information about the for read only



2-4 Queries: Selecting Data from a Table

Choosing Columns in a Query Adaptive Server Enterprise Release 11.5.x

and for update clauses, see the declare cursor command in the Adaptive
Server Reference Manual.

➤ Note
The for browse clause is used only in DB-Library applications. See the Open
Client DB-Library/C Reference Manual for details. See also “Using Browse

Mode in Place of Cursors” on page 17-26.

Choosing Columns in a Query

The select list frequently consists of a series of column names
separated by commas or an asterisk to represent all columns in create
table order.

However, it can include one or more expressions, separated by
commas, where an expression is a constant, column name, function,
subquery, case expression, or any combination of these connected by
arithmetic or bitwise operators and parentheses. The general syntax
for the select list looks like this:

select expression  [, expression ]...
from table_list

If any table or column name in the list does not conform to the rules
for valid identifiers, be sure to set quoted_identifier on and enclose the
identifier in double quotes.

Choosing All Columns: select *

The asterisk (*) has a special meaning in select statements. It stands
for all the column names in all the tables specified by the from clause.
Use it to save typing time and errors when you want to see all the
columns in a table.

The syntax for selecting all the columns in a table is:

select *
from table_list

Because select * finds all the columns currently in a table, changes in
the structure of a table such as adding, removing, or renaming
columns automatically modify the results of select *. Listing the
columns individually gives you more precise control over the
results.



Transact-SQL User’s Guide 2-5

Adaptive Server Enterprise Release 11.5.x Choosing Columns in a Query

The following statement retrieves all columns in the publishers table
and displays them in the order in which they were defined when the
publishers table was created. No where clause is included; therefore,
this statement also retrieves every row:

select *
from publishers

The results look like this:

pub_id  pub_name              city          state
-----   --------------        ---------     -----
0736    New Age Books         Boston        WA
0877    Binnet & Hardley      Washington    DC
1389    Algodata Infosystems  Berkeley      CA

(3 rows affected)

You get exactly the same results by listing all the column names in
the table in order after the select keyword:

select pub_id, pub_name, city, state
from publishers

You can also use “*” more than once in a query:

select *, *
from publishers

The effect is to display each column name and each piece of column
data twice. Like a column name, “*” can be qualified with a table
name, as in the following query:

select publishers.*
from publishers

Choosing Specific Columns

To select only specific columns in a table, use this syntax:

select column_name [, column_name ]...
from table_name

Separate each column name from the column name that follows it
with a comma, for example:

select au_lname, au_fname
from authors



2-6 Queries: Selecting Data from a Table

Choosing Columns in a Query Adaptive Server Enterprise Release 11.5.x

Rearranging the Order of Columns

The order in which you list the column names determines the order
in which the columns are displayed. The two following examples
show how to specify column order in a display. Both of them find
and display the publisher names and identification numbers from all
three of the rows in the publishers table. The first one prints pub_id
first, followed by pub_name. The second one reverses that order. The
information is exactly the same; only its organization changes.

select pub_id, pub_name
from publishers

pub_id   pub_name
-----    ---------------
0736     New Age Books
0877     Binnet & Hardley
1389     Algodata Infosystems

(3 rows affected)

select pub_name, pub_id
from publishers

pub_name                      pub_id
---------------------         ------
New Age Books                 0736
Binnet & Hardley              0877
Algodata Infosystems          1389

(3 rows affected)

Renaming Columns in Query Results

When query results are displayed, each column’s default heading is
the name given to it when it was created. You can specify a column
heading by using:

column_heading  = column_name

or:

column_name column_heading

or:

column_name  as column_heading

instead of just the column name in a select list. This provides a
substitute name for the column. When this name is displayed in the
results, it functions as a column heading, which can produce more



Transact-SQL User’s Guide 2-7

Adaptive Server Enterprise Release 11.5.x Choosing Columns in a Query

readable results. For example, to change pub_name to “Publisher” in
the previous query, type any of the following statements:

select Publisher = pub_name, pub_id
from publishers

select pub_name Publisher, pub_id
from publishers

select pub_name as Publisher, pub_id
from publishers

The results of these statements look like this:

Publisher                 pub_id
----------------------    ------
New Age Books             0736
Binnet & Hardley          0877
Algodata Infosystems      1389

(3 rows affected)

Quoted Strings in Column Headings

You can include any characters—even blanks—in a column heading
if you enclose the entire heading in quotation marks. You do not need
to set the quoted_identifier option on. If the column heading is not
enclosed in quotation marks, it must conform to the rules for
identifiers. Both of the following select queries produce the same
result:

select "Publisher’s Name" = pub_name
from publishers

select pub_name "Publisher’s Name"
from publishers

Publisher’s Name
----------------
New Age Books
Binnet & Hardley
Algodata Infosystems

(3 rows affected)

In addition, you can use Transact-SQL reserved words in quoted
column headings. For example, the following query, using the
reserved word sum as a column heading, is valid:

select "sum" = sum(total_sales) from titles

Quoted column headings cannot be more than 30 bytes long.



2-8 Queries: Selecting Data from a Table

Choosing Columns in a Query Adaptive Server Enterprise Release 11.5.x

➤ Note
Before using quotes around a column name in a create table, alter table, select
into, or create view statement, you must set quoted_identifier on.

Character Strings in Query Results

The select statements you have seen so far produce results that consist
of data from the tables in the from clause. Strings of characters can
also be displayed in query results.

Enclose the entire string in single or double quotation marks and
separate it from other elements in the select list with commas. Use
double quotation marks if there is an apostrophe in the string—
otherwise, the apostrophe is interpreted as a single quotation mark.

An example statement with a character string is shown here,
followed by its results:

select "The publisher’s name is", Publisher =
pub_name
from publishers

                              Publisher
------------------------      --------------------
The publisher’s name is       New Age Books
The publisher’s name is       Binnet & Hardley
The publisher’s name is       Algodata Infosystems

(3 rows affected)

Computed Values in the Select List

You can perform computations with data from numeric columns or
on numeric constants in a select list.

Bitwise Operators

The bitwise operators are a Transact-SQL extension for use with
integer type data. These operators convert each integer operand into
its binary representation, then evaluate the operands column by
column. A value of 1 corresponds to true; a value of 0 corresponds to
false.



Transact-SQL User’s Guide 2-9

Adaptive Server Enterprise Release 11.5.x Choosing Columns in a Query

Table 2-1 shows the bitwise operators.

For more information on bitwise operators, see the Adaptive Server
Reference Manual.

Arithmetic Operators

The following table shows the available arithmetic operators.

You can use the arithmetic operators—addition, subtraction,
division, and multiplication— on any numeric column—int, smallint,
tinyint, numeric, decimal, float, or money. The modulo operator cannot
be used on money columns. A modulo is the integer remainder after
a division operation on two integers. For example, 21 % 9 = 3 because
21 divided by 9 equals 2, with a remainder of 3.

Certain arithmetic operations can be performed on datetime columns,
using the date functions. See Chapter 10, “Using the Built-In
Functions in Queries,” for information on the date functions. All of
these operators can be used in the select list with column names and
numeric constants in any combination. For example, to see what a
projected sales increase of 100 percent for all the books in the titles
table looks like, type:

select title_id, total_sales, total_sales * 2
from titles

Table 2-1: Bitwise operators

Operator Meaning
& Bitwise and (two operands)
| Bitwise or (two operands)
^ Bitwise exclusive or (two operands)
~ Bitwise not (one operand)

Table 2-2: Arithmetic operators

Operator Operation
+ Addition
- Subtraction
/ Division
* Multiplication
% Modulo



2-10 Queries: Selecting Data from a Table

Choosing Columns in a Query Adaptive Server Enterprise Release 11.5.x

Here are the results:

title_id     total_sales
--------     -----------       ---------
BU1032              4095            8190
BU1111              3876            7752
BU2075             18722           37444
BU7832              4095            8190
MC2222              2032            4064
MC3021             22246           44492
MC3026              NULL            NULL
PC1035              8780           17560
PC8888              4095            8190
PC9999              NULL            NULL
PS1372               375             750
PS2091              2045            4090
PS2106               111             222
PS3333              4072            8144
PS7777              3336            6672
TC3218               375             750
TC4203             15096           30192
TC7777              4095            8190

(18 rows affected)

Notice the null values in the total_sales column and the computed
column. Null values have no explicitly assigned values. When you
perform any arithmetic operation on a null value, the result is NULL.
Give the computed column a heading, say “proj_sales”, by typing:

select title_id, total_sales,
     proj_sales = total_sales * 2
from titles

For an even fancier display, try adding character strings such as
“Current sales =” and “Projected sales are” to the select statement.
The column from which the computed column is generated does not
have to appear in the select list. The total_sales column, for example,
is shown in these sample queries only for comparison of its values
with the values from the total_sales * 2 column. To see just the
computed values, type:

select title_id, total_sales * 2
from titles



Transact-SQL User’s Guide 2-11

Adaptive Server Enterprise Release 11.5.x Choosing Columns in a Query

Arithmetic operators also work directly with the data values in
specified columns, when no constants are involved. Here is an
example:

select title_id, total_sales * price
from titles

title_id
--------     ----------
BU1032        81,859.05
BU1111        46,318.20
BU2075        55,978.78
BU7832        81,859.05
MC2222        40,619.68
MC3021        66,515.54
MC3026             NULL
PC1035       201,501.00
PC8888        81,900.00
PC9999             NULL
PS1372         8,096.25
PS2091        22,392.75
PS2106           777.00
PS3333        81,399.28
PS7777        26,654.64
TC3218         7,856.25
TC4203       180,397.20
TC7777        61,384.05

(18 rows affected)

Finally, computed columns can come from more than one table. The
chapters on joining and subqueries give information on how to work
with multitable queries.

This query calculates the product of the number of copies of a
psychology book sold by an outlet (the qty column from the
salesdetail table) and the price of the book (the price column from the
titles table).

select salesdetail.title_id, stor_id, qty * price
from titles, salesdetail
where titles.title_id = salesdetail.title_id
and titles.title_id = "PS2106"



2-12 Queries: Selecting Data from a Table

Choosing Columns in a Query Adaptive Server Enterprise Release 11.5.x

title_id         stor_id
---------------- -----------  ------
PS2106           8042         210.00
PS2106           8042         350.00
PS2106           8042         217.00

(3 rows affected)

Arithmetic Operator Precedence

When there is more than one arithmetic operator in an expression,
multiplication, division, and modulo are calculated first, followed by
subtraction and addition. When all arithmetic operators in an
expression have the same level of precedence, the order of execution
is left to right. Expressions within parentheses take precedence over
all other operations.

For example, the following select statement multiplies the total sales
of a book by its price to calculate a total dollar amount, and then
subtracts from that the author’s advance divided in half.

select title_id, total_sales * price - advance / 2
from titles

The product of total_sales and price is calculated first, because the
operator is multiplication. Next, the advance is divided by 2, and the
result is subtracted from total_sales.

To avoid misunderstandings, use parentheses. The following query
has the same meaning and gives the same results as the previous one,
but some may find it easier to understand:

select title_id,(total_sales * price) - (advance /2)
from titles

title_id
--------     ----------
 BU1032       79,359.05
 BU1111       43,818.20
 BU2075       50,916.28
 BU7832       79,359.05
 MC2222       40,619.68
 MC3021       59,015.54
 MC3026            NULL
 PC1035      198,001.00
 PC8888       77,900.00
 PC9999            NULL



Transact-SQL User’s Guide 2-13

Adaptive Server Enterprise Release 11.5.x Choosing Columns in a Query

 PS1372        4,596.25
 PS2091        1,255.25
 PS2106       -2,223.00
 PS3333       80,399.28
 PS7777       24,654.64
 TC3218        4,356.25
 TC4203      178,397.20
 TC7777       57,384.05

(18 rows affected)

Use parentheses to change the order of execution; calculations inside
parentheses are handled first. If parentheses are nested, the most
deeply nested calculation has precedence. For example, the result
and meaning of the preceding can be changed if you use parentheses
to force evaluation of the subtraction before the division:

select title_id, (total_sales * price - advance) /2
from titles

title_id
--------   -----------------------
BU1032                  38,429.53
BU1111                  20,659.10
BU2075                  22,926.89
BU7832                  38,429.53
MC2222                  20,309.84
MC3021                  25,757.77
MC3026                       NULL
PC1035                  97,250.50
PC8888                  36,950.00
PC9999                       NULL
PS1372                     548.13
PS2091                  10,058.88
PS2106                  -2,611.50
PS3333                  39,699.64
PS7777                  11,327.32
TC3218                     428.13
TC4203                  88,198.60
TC7777                  26,692.03

(18 rows affected)

Selecting text and image Values

text and image values can be quite large. When the select list includes
text and image values, the limit on the length of the data returned
depends on the setting of the @@textsize global variable. The default



2-14 Queries: Selecting Data from a Table

Choosing Columns in a Query Adaptive Server Enterprise Release 11.5.x

setting for @@textsize depends on the software used to access
Adaptive Server; the default value is 32K for isql. The value is
changed with the set command:

set textsize 25

With this setting of @@textsize, a select statement that includes a text
column displays only the first 25 bytes of the data.

➤ Note
When you are selecting image data, the returned value includes the

characters “0x”, which indicates that the data is hexadecimal. These two

characters are counted as part of @@textsize.

To reset @@textsize to its default value, use:

set textsize 0

The default display is the actual length of the data when its size is
less than textsize. For more information about text and image
datatypes, see Chapter 6, “Using and Creating Datatypes.”

Using readtext

The readtext command provides another way to retrieve text and
image values. The readtext command needs the name of the table and
column, the text pointer, a starting offset within the column, and the
number of characters or bytes to retrieve. This example finds 6
characters in the copy column in the blurbs table:

declare @val varbinary(16)
select @val = textptr(copy) from blurbs
where au_id = "648-92-1872"
readtext blurbs.copy @val 2 6 using chars

In the example, after the @val local variable has been declared, readtext
displays characters 3–8 of the copy column, since the offset was 2. The
full syntax of the readtext command is:

readtext [[ database .] owner .] table_name . column_name
text_ptr offset size  [holdlock]
[using {bytes|chars|characters}]
[at isolation {read uncommitted | read committed |
    serializable}]

The textptr function returns a 16-byte binary string. Declare a local
variable to hold the text pointer, and then use the variable with
readtext. The holdlock flag causes the text value to be locked for reads



Transact-SQL User’s Guide 2-15

Adaptive Server Enterprise Release 11.5.x Choosing Columns in a Query

until the end of the transaction. Other users can read the value, but
they cannot modify it. The at isolation clause is described in Chapter
18, “Transactions: Maintaining Data Consistency and Recovery.”

If you are using a multibyte character set, the using option allows you
to choose whether you want readtext to interpret the offset and size as
bytes or as characters. Both chars and characters specify characters.
This option has no effect when used with a single-byte character set
or with image values (readtext reads image values only on a byte-by-
byte basis). If the using option is not given, readtext returns the value as
if bytes were specified.

Adaptive Server has to determine the number of bytes to send to the
client in response to a readtext command. When the offset and size are
in bytes, determining the number of bytes in the returned text is
simple. When the offset and size are in characters, Adaptive Server
must take an extra step to calculate the number of bytes being
returned to the client. As a result, performance may be slower when
using characters as the offset and size. using characters is useful only
when Adaptive Server is using a multibyte character set. This option
ensures that readtext does not return partial characters.

When using bytes as the offset, Adaptive Server may find partial
characters at the beginning or end of the text data to be returned. If it
does, the server replaces each partial character with question marks
before returning the text to the client.

You cannot use readtext on text and image columns in views.

Select List Summary

The select list can include * (all columns in create-table order), a list of
column names in any order, character strings, column headings, and
expressions including arithmetic operators. You can also include
aggregate functions, which are discussed in Chapter 3,
“Summarizing, Grouping, and Sorting Query Results.” Here are
some select lists to try with the tables in the pubs2 sample database:

1. select titles.*
from titles

2. select Name = au_fname, Surname = au_lname
from authors

3. select Sales = total_sales * price,
ToAuthor = advance,
ToPublisher = (total_sales * price) - advance
from titles



2-16 Queries: Selecting Data from a Table

Eliminating Duplicate Query Results with distinct Adaptive Server Enterprise Release 11.5.x

4. select "Social security #", au_id
from authors

5. select this_year = advance, next_year = advance
   + advance/10, third_year = advance/2,
    "for book title #", title_id
from titles

6. select "Total income is",
Revenue = price * total_sales,
"for", Book# = title_id
from titles

Eliminating Duplicate Query Results with distinct

The optional distinct keyword eliminates duplicate rows from the
results of a select statement.

If you do not specify distinct, you get all rows, including duplicates.
Optionally, you can specify all before the select list to get all rows. For
compatibility with other implementations of SQL, Adaptive Server
syntax allows the use of all to explicitly ask for all rows. all is the
default.

For example, if you search for all the author identification codes in
the titleauthor table without distinct, you get these rows:

select au_id
from titleauthor

au_id
-----------
172-32-1176
213-46-8915
213-46-8915
238-95-7766
267-41-2394
267-41-2394
274-80-9391
409-56-7008
427-17-2319
472-27-2349
486-29-1786
486-29-1786
648-92-1872
672-71-3249
712-45-1867
722-51-5454
724-80-9391



Transact-SQL User’s Guide 2-17

Adaptive Server Enterprise Release 11.5.x Eliminating Duplicate Query Results with distinct

724-80-9391
756-30-7391
807-91-6654
846-92-7186
899-46-2035
899-46-2035
998-72-3567
998-72-3567

(25 rows affected)

Looking at the results, you will see that there are some duplicate
listings. You can eliminate them, and see only the unique au_ids, with
distinct.

select distinct au_id
from titleauthor

au_id
-----------
172-32-1176
213-46-8915
238-95-7766
267-41-2394
274-80-9391
409-56-7008
427-17-2319
472-27-2349
486-29-1786
648-92-1872
672-71-3249
712-45-1867
722-51-5454
724-80-9391
756-30-7391
807-91-6654
846-92-7186
899-46-2035
998-72-3567

(19 rows affected)

The distinct keyword treats null values as duplicates of each other. In
other words, when distinct is included in a select statement, only one
NULL is returned in the results, no matter how many null values are
encountered.

When used with the order by clause, the distinct keyword can return
multiple values. See “order by and group by Used with and select
distinct” on page 3-28 for more information.



2-18 Queries: Selecting Data from a Table

Specifying Tables: The from Clause Adaptive Server Enterprise Release 11.5.x

Specifying Tables: The from Clause

The from clause is required in every select statement involving data
from tables or views. Use it to list all the tables and views containing
columns included in the select list and in the where clause. If the from
clause includes more than one table or view, separate them with
commas.

The maximum number of tables and views allowed in a query is 16.
This total includes tables listed in the from clause, base tables
referenced by a view definition, any tables referenced in subqueries,
a table being created with the into keyword, and any tables referenced
as part of referential integrity constraints.

The from syntax looks like this:

select select_list
[from [[ database .] owner .]{ table_name  | view_name }
        [holdlock | noholdlock] [shared]
    [,[[ database .] owner .]{ table_name  | view_name }
        [holdlock | noholdlock] [shared]]... ]

Table names can be from 1–30 bytes long. You can use a letter, @, #, or
_ as the first character. The characters that follow can be digits,
letters, or @, #, $, _, ¥, or £. Temporary table names must begin either
with “#” (pound sign), if they are created outside tempdb, or with
“tempdb..”. If you create a temporary table outside tempdb, its name
must be no longer than 13 bytes, since Adaptive Server attaches an
internal numeric suffix to the name to ensure that the name is
unique. For more information, see Chapter 7, “Creating Databases
and Tables.”

In the from clause, the full naming syntax for tables and views is
always permitted, such as:

database . owner . table_name
database . owner . view_name

This is necessary only when there might be some confusion about the
name. You can give table names correlation names to save typing.
Assign the correlation name in the from clause by giving the
correlation name after the table name, like this:

select p.pub_id, p.pub_name
from publishers p

All other references to that table, for example in a where clause, must
use the correlation name. Correlation names may not begin with a
numeral.



Transact-SQL User’s Guide 2-19

Adaptive Server Enterprise Release 11.5.x Selecting Rows: The where Clause

Selecting Rows: The where Clause

The where clause in a select statement specifies the search conditions
for exactly which rows are retrieved. The general format is:

select select_list
from table_list
where search_conditions

Search conditions, or qualifications, in the where clause include:

• Comparison operators (=, <, >, and so on)

  where advance * 2 > total_sales * price

• Ranges (between and not between)

  where total_sales between 4095 and 12000

• Lists (in, not in)

  where state in ("CA", "IN", "MD")

• Character matches (like and not like)

  where phone not like "415%"

• Unknown values (is null and is not null)

  where advance is null

• Combinations of these (and, or)

where advance < 5000 or total_sales between 2000
   and 2500

In addition, the where keyword can introduce:

• Join conditions (see Chapter 4, “Joins: Retrieving Data from
Several Tables”)

• Subqueries (see Chapter 5, “Subqueries: Using Queries Within
Other Queries”)

➤ Note
The only where condition that you can use on text columns is like (or not like).

For more information possible search conditions, see the “where
Clause” section in the Adaptive Server Reference Manual.



2-20 Queries: Selecting Data from a Table

Selecting Rows: The where Clause Adaptive Server Enterprise Release 11.5.x

Comparison Operators

Transact-SQL uses the following comparison operators:

The operators are used in the syntax:

where expression comparison_operator expression

where an expression is a constant, column name, function, subquery,
case expression,  or any combination of these connected by arithmetic
or bitwise operators. In comparing character data, < means earlier in
the sort order and > means later in the sort order. (Use the system
procedure sp_helpsort to see the sort order for your Adaptive Server.)

Trailing blanks are ignored for the purposes of comparison. So, for
example, “Dirk” is the same as “Dirk  ”. In comparing dates, < means
earlier and > means later. Be sure to put apostrophes or quotation
marks around all char, nchar, varchar, nvarchar, text, and datetime data.
For more information on entering datetime data, see Chapter 8,
“Adding, Changing, and Deleting Data.”

Some sample select statements using comparison operators follow:

select *
from titleauthor
where royaltyper < 50

select authors.au_lname, authors.au_fname
from authors
where au_lname > "McBadden"

select au_id, phone
from authors
where phone != "415 658-9932"

select title_id, newprice = price * $1.15
from  pubs2..titles
where advance > 5000

Table 2-3: Comparison operators

Operator Meaning
= Equal to
> Greater than
< Less than
>= Greater than or equal to
<= Less than or equal to
<> Not equal to
!= Not equal to (Transact-SQL extension)
!> Not greater than (Transact-SQL extension)
!< Not less than (Transact-SQL extension)



Transact-SQL User’s Guide 2-21

Adaptive Server Enterprise Release 11.5.x Selecting Rows: The where Clause

not negates an expression. Either of the following two queries will
find all business and psychology books that do not have an advance
of more than $5500. However, note the difference in position
between the negative logical operator (not) and the negative
comparison operator (!>).

select title_id, type, advance
from titles
where (type = "business" or type = "psychology")
and not advance >5500

select title_id, type, advance
from titles
where (type = "business" or type = "psychology")
and advance !>5500

title_id  type             advance

--------  ------------    --------
BU1032    business        5,000.00
BU1111    business        5,000.00
BU7832    business        5,000.00
PS2091    psychology      2,275.00
PS3333    psychology      2,000.00
PS7777    psychology      4,000.00

(6 rows affected)

Ranges (between and not between)

Use the between keyword to specify an inclusive range, in which the
lower value and the upper value are searched for as well as the
values they bracket.

For example, to find all the books with sales between and including
$4095 and $12,000, you can write this query:

select title_id, total_sales
from titles
where total_sales between 4095 and 12000

title_id  total_sales
------    -----------
BU1032           4095
BU7832           4095
PC1035           8780
PC8888           4095
TC7777           4095

(5 rows affected)



2-22 Queries: Selecting Data from a Table

Selecting Rows: The where Clause Adaptive Server Enterprise Release 11.5.x

Notice that books with sales of $4095 are included in the results.
Books with sales of $12,000 are included, too. You can specify an
exclusive range with the greater than (>) and less than (<) operators.
The same query using the greater than and less than operators
returns the following results, because these operators are not
inclusive:

select title_id, total_sales
from titles
where total_sales > 4095 and total_sales < 12000

title_id  total_sales
------    -----------
PC1035           8780

(1 row affected)

not between finds all the rows that are not inside the range. To find all
the books with sales outside the $4095 to $12,000 range, type:

select title_id, total_sales
from titles
where total_sales not between 4095 and 12000

title_id     total_sales
--------     -----------
BU1111              3876
BU2075             18722
MC2222              2032
MC3021             22246
PS1372               375
PS2091              2045
PS2106               111
PS3333              4072
PS7777              3336
TC3218               375
TC4203             15096

(11 rows affected)

Lists (in and not in)

The in keyword allows you to select values that match any one of a
list of values. The expression can be a constant or a column name,
and the values list can be a set of constants or, more commonly, a
subquery.



Transact-SQL User’s Guide 2-23

Adaptive Server Enterprise Release 11.5.x Selecting Rows: The where Clause

For example, without in, if you want a list of the names and states of
all the authors who live in California, Indiana, or Maryland, you can
type this query:

select au_lname, state
from authors
where state = "CA" or state = "IN" or state = "MD"

However, you get the same results with less typing if you use in. The
items following the in keyword must be separated by commas and
enclosed in parentheses. Put single or double quotes around char,
varchar, and datatime values. For example:

select au_lname, state
from authors
where state in ("CA", "IN", "MD")

This is what results from either query:

 au_lname         state
 -----------      -----
 White            CA
 Green            CA
 Carson           CA
 O’Leary          CA
 Straight         CA
 Bennet           CA
 Dull             CA
 Gringlesby       CA
 Locksley         CA
 Yokomoto         CA
 DeFrance         IN
 Stringer         CA
 MacFeather       CA
 Karsen           CA
 Panteley         MD
 Hunter           CA
 McBadden         CA

(17 rows affected)

Perhaps the most important use for the in keyword is in nested
queries, also called subqueries. For a full discussion of subqueries,
see Chapter 5, “Subqueries: Using Queries Within Other Queries.”
However, the following example gives an idea of what you can do
with nested queries and the in keyword.

Suppose you want to know the names of the authors who receive less
than 50 percent of the total royalties on the books they co-author. The
authors table gives author names and the titleauthor table gives



2-24 Queries: Selecting Data from a Table

Selecting Rows: The where Clause Adaptive Server Enterprise Release 11.5.x

royalty information. By putting the two tables together using in, but
without listing the two tables in the same from clause, you can extract
the information you need. The following query translates as: Find all
the au_ids in the titleauthor table in which the authors make less than
50 percent of the royalty on any one book. Then select from the
authors table all the author names with au_ids that match the results
from the titleauthor query. The results show that several authors fall
into the less than 50 percent category.

select au_lname, au_fname
from authors
where au_id in
  (select au_id
   from titleauthor
   where royaltyper <50)

au_lname          au_fname
--------------    ------------
Green             Marjorie
O’Leary           Michael
Gringlesby        Burt
Yokomoto          Akiko
MacFeather        Stearns
Ringer            Anne

(6 rows affected)

not in finds the authors that do not match the items in the list. The
following query finds the names of authors who do not make less
than 50 percent of the royalties on at least one book.

select au_lname, au_fname
from authors
where au_id not in
  (select au_id
   from titleauthor
   where royaltyper <50)

au_lname          au_fname
---------------   ------------
White             Johnson
Carson            Cheryl
Straight          Dick
Smith             Meander
Bennet            Abraham
Dull              Ann
Locksley          Chastity
Greene            Morningstar
Blotchet-Halls    Reginald
del Castillo      Innes



Transact-SQL User’s Guide 2-25

Adaptive Server Enterprise Release 11.5.x Selecting Rows: The where Clause

DeFrance          Michel
Stringer          Dirk
Karsen            Livia
Panteley          Sylvia
Hunter            Sheryl
McBadden          Heather
Ringer            Albert
Smith             Gabriella

(18 rows affected)

Matching Character Strings: like

The like keyword indicates that the following character string
(enclosed by single or double quotes) is a matching pattern. like is
used with char, varchar, nchar, nvarchar, binary, varbinary, text, and
datetime data.

The syntax for like is:

{where | having} [not]
column_name  [not] like  " match_string "

The column data is compared to a match_string that can include these
special symbols:

Table 2-4: Special symbols for matching character strings

Symbols Meaning

% Matches any string of 0 or more characters

_ Matches any one character

[specifier] Brackets enclose ranges or sets, such as [a–f] or
[abcdef]. specifier may take two forms:

rangespec1–rangespec2:

rangespec1 indicates the start of a range of characters.

- is a special character, indicating a range

rangespec2 indicates the end of a range of characters

set:

can be comprised of any discrete set of values, in any order,
such as [a2bR]. Note that the range [a–f], and the sets
[abcdef] and [fcbdae] return the same set of values.

[^specifier] caret (^) preceding a specifier indicates non-inclusion. [^a–f]
means “not in the range a–f”; [^a2bR] means “not a, 2, b, or R.”



2-26 Queries: Selecting Data from a Table

Selecting Rows: The where Clause Adaptive Server Enterprise Release 11.5.x

You can match the column data to constants, variables, or other
columns that contain the wildcard characters shown in Table 2-4.
When using constants, enclose the match strings and character
strings in quotation marks. For example, using like with the data in
the authors table:

• like “Mc%” searches for every name that begins with the letters
‘‘Mc’’ (McBadden).

• like “%inger” searches for every name that ends with ‘‘inger’’
(Ringer, Stringer).

• like “%en%” searches for every name containing the letters ‘‘en’’
(Bennet, Green, McBadden).

• like “_heryl” searches for every 6-letter name ending with ‘‘heryl’’
(Cheryl).

• like “[CK]ars[eo]n” searches for ‘‘Carsen,’’ ‘‘Karsen,’’ ‘‘Carson,’’
and ‘‘Karson’’ (Carson).

• like “[M–Z]inger” searches for all the names ending with ‘‘inger’’
that begin with any single letter from M to Z (Ringer).

• like “M[^c]%” searches for all names beginning with ‘‘M’’ that do
not have ‘‘c’’ as the second letter.

This query finds all the phone numbers in the authors table that have
415 as the area code:

select phone
from authors
where phone like "415%"

The only where condition that you can use on text columns is like. This
query finds all the rows in the blurbs table where the copy column
mentions the word “computer”:

select * from blurbs
where copy like "%computer%"

Adaptive Server interprets wildcard characters used without like as
literals rather than as a pattern; they represent exactly their own
values. The following query attempts to find any phone numbers
that consist of the four characters “415%” only. It does not find phone
numbers that start with 415.

select phone
from authors
where phone = "415%"

When you use like with datetime values, Adaptive Server converts the
dates to the standard datetime format, and then to varchar. Since the



Transact-SQL User’s Guide 2-27

Adaptive Server Enterprise Release 11.5.x Selecting Rows: The where Clause

standard storage format does not include seconds or milliseconds,
you cannot search for seconds or milliseconds with like and a pattern.

It is a good idea to use like when you search for datetime values, since
datetime entries may contain a variety of date parts. For example, if
you insert the value “9:20” and the current date into a column named
arrival_time, the clause:

where arrival_time = "9:20"

would not find the value, because Adaptive Server converts the
entry into “Jan 1 1900 9:20AM.” However, the clause below would
find the 9:20 value:

where arrival_time like "%9:20%"

Using not like

With not like, you can use the same wildcard characters that you can
use with like. To find all the phone numbers in the authors table that
do not have 415 as the area code, you can use either of these queries:

select phone
from authors
where phone not like "415%"

select phone
from authors
where not phone like "415%"

not like and ^ May Give Different Results

You cannot always duplicate not like patterns with like and the
negative wildcard character [^]. This is because not like finds the items
that do not match the entire like pattern, but like with negative
wildcard characters is evaluated one character at a time.

For example, this query finds the system tables in a database whose
names begin with “sys”:

select name
from sysobjects
where name like "sys%"

To see all the objects that are not system tables, use:

not like "sys%"

If you have a total of 32 objects and like finds 13 names that match the
pattern, not like will find the 19 objects that do not match the pattern.

A pattern such as the following may not produce the same results:



2-28 Queries: Selecting Data from a Table

Selecting Rows: The where Clause Adaptive Server Enterprise Release 11.5.x

like [^s][^y][^s]%

Instead of 19, you might get only 14, with all the names that begin
with “s” or have “y” as the second letter or have “s” as the third letter
eliminated from the results, as well as the system table names. This is
because match strings with negative wildcard characters are
evaluated in steps, one character at a time. If the match fails at any
point in the evaluation, it is eliminated.

Using Wildcard Characters As Literal Characters

You can search for wildcard characters by escaping them and
searching for them as literals. There are two ways to use the wildcard
characters as literals in a like match string: square brackets and the
escape clause. The match string can also be a variable or a value in a
table that contains a wildcard character.

Square Brackets (Transact-SQL Extension)

Use square brackets as characters for the percent sign, the
underscore, and the left bracket. To search for a dash, rather than
using it to specify a range for which to search, use the dash as the first
character inside a set of brackets.

escape Clause (SQL Standard Compliant)

Use the escape clause to specify an escape character in the like clause:

Table 2-5: Using square brackets to search for wildcard characters

like Clause Meaning
like "5%" 5 followed by any string of 0 or more characters
like "5[%]" 5%
like "_n" an, in, on, and so forth
like "[_]n" _n
like "[a-cdf]" a, b, c, d, or f
like "[-acdf]" -, a, c, d, or f
like "[ [ ]" [
like "[ ] ]" ]

Table 2-6: Using the escape clause

like Clause Meaning
like "5@%" escape "@" 5%
like "*_n" escape "*" _n
like "%80@%%" escape "@" string containing 80%
like "*_sql**%" escape "*" string containing _sql*



Transact-SQL User’s Guide 2-29

Adaptive Server Enterprise Release 11.5.x Selecting Rows: The where Clause

• An escape character must be a single character string. Any
character in the server’s default character set can be used.
Specifying more than one escape character raises a SQLSTATE
error condition, and Adaptive Server returns an error message.

For example, the following escape clauses cause this error
condition:

like "%XX_%" escape "XX"
like "%XX%X_%" escape "XX"

• An escape character is valid only within its like clause and has no
effect on other like clauses contained in the same statement.

• The only characters that are valid following an escape character
are the wildcard characters ( _ , % , [ , ] , and [^] ), and the escape
character itself. The escape character affects only the character
following it, and subsequent characters are not affected by it. If
the pattern contains two literal occurrences of a character that
happens to be an escape character, the string must contain four
consecutive escape characters (see the last example in Table 2-6
on page 2-28. Otherwise, Adaptive Server raises a SQLSTATE
error condition and returns an error message.

For example, the following escape clauses cause a SQLSTATE
error condition:

like "P%X%%X" escape "X"
like "%X%%Xd_%" escape "X"
like "%?X%" escape "?"
like "_e%&u%" escape "&"

Interaction of Square Brackets and the escape Clause

An escape character retains its special meaning within square
brackets, unlike the wildcard characters such as the underscore, the
percent sign, and the left bracket.

Do not use existing wildcard characters as escape characters, for
these reasons:

• If you specify “_” or “%” as an escape character, it loses its special
meaning within that like clause and acts only as an escape
character.

like "%#####_#%%" escape "#" string containing ##_%

Table 2-6: Using the escape clause  (continued)

like Clause Meaning



2-30 Queries: Selecting Data from a Table

Selecting Rows: The where Clause Adaptive Server Enterprise Release 11.5.x

• If you specify “[“ or “]” as an escape character, the Transact-SQL
meaning of the bracket is disabled within that like clause.

• If you specify “-” or “^” as an escape character, it loses the special
meaning that it normally has within square brackets and acts
only as an escape character.

Trailing Blanks and %

Adaptive Server truncates trailing blanks following “%” in a like
clause to a single trailing blank. like ‘‘% ’’ (percent sign followed by
2 spaces) matches ‘‘X ‘’ (one space); ‘‘X ’’ (two spaces); ‘‘X ’’
(three spaces), or any number of trailing spaces.

Using Wildcard Characters in Columns

You can use wildcard characters in columns and column names in like
clauses. A table called special_discounts in the pubs2 database could be
created to run a price projection for a special sale:

 id_type discount
 ------- -----------
 BU%              10
 PS%              12
 MC%              15

The following query uses wildcard characters in id_type in the where
clause:

select title_id, discount, price, price -
(price*discount/100)
from special_discounts, titles
where title_id like id_type

Here are the results of that query:



Transact-SQL User’s Guide 2-31

Adaptive Server Enterprise Release 11.5.x Selecting Rows: The where Clause

 title_id   discount      price
 -------- ----------- -------------- --------------
 BU1032            10          19.99          17.99
 BU1111            10          11.95          10.76
 BU2075            10           2.99           2.69
 BU7832            10          19.99          17.99
 PS1372            12          21.59          19.00
 PS2091            12          10.95           9.64
 PS2106            12           7.00           6.16
 PS3333            12          19.99          17.59
 PS7777            12           7.99           7.03
 MC2222            15          19.99          16.99
 MC3021            15           2.99           2.54
 MC3026            15           NULL           NULL

(12 rows affected)

This permits sophisticated pattern matching without having to
construct a series of or clauses.

Character Strings and Quotation Marks

When you enter or search for character and date data (char, nchar,
varchar, nvarchar, datetime, and smalldatetime datatypes), you must
enclose it in single or double quotation marks.

➤ Note
If the quoted_identifier option is set to on, do not use double quotes around

character or date data. You must use single quotes, or Adaptive Server will

treat the data as an identifier.

There are two ways to specify literal quotations within a character
entry. The first method is to use two consecutive quotation marks.
For example, if you have begun a character entry with a single
quotation mark and want to include a single quotation mark as part
of the entry, use two single quotation marks:

'I don’’t understand.'

With double quotation marks:

"He said, ""It is not really confusing."""

The second method is to enclose a quotation in the other kind of
quotation mark. In other words, surround an entry containing



2-32 Queries: Selecting Data from a Table

Selecting Rows: The where Clause Adaptive Server Enterprise Release 11.5.x

double quotation marks with single quotation marks, or vice versa.
Here are some examples:

'George said, "There must be a better way."'
"Isn’t there a better way?"
'George asked, "Isn’’t there a better way?"'

To continue a character string that would go off the end of one line on
your screen, enter a backslash (\) before going to the following line.

“Unknown” Values: NULL

A NULL in a column means that the user or application has made no
entry in that column. A data value for the column is “unknown” or
“not available.”

NULL is not synonymous with “zero” (numerical values) or “blank”
(character values). Rather, NULL values allow you to distinguish
between a deliberate entry of zero for numeric columns or blank for
character columns and a non-entry, which is NULL for both numeric
and character columns.

NULL can be entered in a column where NULL values are permitted,
as specified in the create table statement, in two ways:

• If no data is entered, Adaptive Server automatically enters the
value “NULL”.

• The user can explicitly enter the value NULL by typing the word
“NULL” or “null” without single or double quotation marks.

If the word ‘‘NULL’’ is typed in a character column with single or
double quotation marks, it is treated as data, not as a null value.

When null values are retrieved, displays of query results show the
word NULL in the appropriate position. For example, the advance
column of the titles table allows null values. By inspecting the data in
that column you can tell whether a book had no advance payment by
agreement (zero in the advance column as in the row for MC2222) or
whether the advance amount was not known when the data was
entered (NULL in the advance column, as in the row for MC3026).

select title_id, type, advance
from titles
where pub_id = "0877"



Transact-SQL User’s Guide 2-33

Adaptive Server Enterprise Release 11.5.x Selecting Rows: The where Clause

title_id     type             advance
--------     ----------       ---------
MC2222       mod_cook              0.00
MC3021       mod_cook         15,000.00
MC3026       UNDECIDED             NULL
PS1372       psychology        7,000.00
TC3218       trad_cook         7,000.00
TC4203       trad_cook         4,000.00
TC7777       trad_cook         8,000.00

(7 rows affected)

Testing a Column for Null Values

Use is null in where, if, and while clauses to compare column values to
NULL and to select them or perform a particular action based on the
results of the comparison. Only columns that return a value of TRUE
are selected or result in the specified action; those that return FALSE
or UNKNOWN do not.

The following example selects only rows for which advance is $5000
or null:

select title_id, advance
from titles
where advance < $5000 or advance is null

Adaptive Server treats null values in different ways, depending on
the operators that you use and the type of values you are comparing.
In general, the result of comparing null values is UNKNOWN, since
it is not possible to determine whether NULL is equal (or not equal)
to a given value or to another NULL. The following cases return
TRUE when expression is any column, variable or literal, or
combination of these, which evaluates as NULL:

• expression is null

• expression = null

• expression = @x where @x is a variable or parameter containing
NULL. This exception facilitates writing stored procedures with
null default parameters.

• expression != n where n is a literal not containing NULL and
expression evaluates to NULL.

The negative versions of these expressions return TRUE when the
expression does not evaluate to NULL:

• expression is not null



2-34 Queries: Selecting Data from a Table

Selecting Rows: The where Clause Adaptive Server Enterprise Release 11.5.x

• expression != null

• expression != @x

Note that the far right side of these exceptions is a literal null, or a
variable or parameter containing NULL. If the far right side of the
comparison is an expression (such as @nullvar + 1), the entire
expression evaluates to NULL.

Following these rules, null column values do not join with other null
column values. Comparing null column values to other null column
values in a where clause always returns UNKNOWN for null values,
regardless of the comparison operator, and the rows are not included
in the results. For example, this query returns no result rows where
column1 contains NULL in both tables (although it may return other
rows):

select column1
from table1 , table2
where table1 . column1  = table2 . column1

These operators return results when used with a NULL:

• = returns all rows that contain NULL.

• != or <> returns all rows that do not contain NULL.

However, when set ansinull is on for compliance with the SQL
standard, the = and != operators do not return results when used with
a NULL. Regardless of the set ansinull option value, the following
operators never return values when used with a NULL: <, <=, !<, >, >=,
!>.

Adaptive Server can determine that a column value is NULL; thus:

column1  =  NULL

can be considered to be true. However, the following comparisons
can never be determined, since NULL means “having an unknown
value”:

where column1  > null

There is no reason to assume that two unknown values are the same.

This logic also applies when you use two column names in a where
clause, that is, when you join two tables. A clause like “where
column1 = column2” does not return rows where the columns
contain null values.

You can also find null values or non-null values with this pattern:

where column_name  is [not] null



Transact-SQL User’s Guide 2-35

Adaptive Server Enterprise Release 11.5.x Selecting Rows: The where Clause

For example:

where advance < $5000 or advance is null

Some of the rows in the titles table contain some incomplete data. For
example, a book called The Psychology of Computer Cooking has been
proposed and its title, title identification number, and probable
publisher have been entered. However, since the author has no
contract yet and details are still up in the air, null values appear in the
price, advance, royalty, total_sales, and notes columns. Because null
values do not match anything in a comparison, a query for all the
title identification numbers and advances for books with moderate
advances (of less than $5000) will not find the row for The Psychology
of Computer Cooking, title identification number MC3026.

select title_id, advance
from titles
where advance < $5000

title_id  advance
--------  ----------
MC2222         0.00
PS2091     2,275.00
PS3333     2,000.00
PS7777     4,000.00
TC4203     4,000.00

(5 rows affected)

Here is a query for books with an advance of less than $5000 or a null
value in the advance column:

select title_id, advance
from titles
where advance < $5000
  or advance is null

title_id  advance
--------  ----------
MC2222          0.00
MC3026          NULL
PC9999          NULL
PS2091      2,275.00
PS3333      2,000.00
PS7777      4,000.00
TC4203      4,000.00

(7 rows affected)

See Chapter 7, “Creating Databases and Tables,” for information on
NULL in the create table statement and for information on the



2-36 Queries: Selecting Data from a Table

Selecting Rows: The where Clause Adaptive Server Enterprise Release 11.5.x

relationship between NULL and defaults. See Chapter 8, “Adding,
Changing, and Deleting Data,” for information on inserting null
values into a table.

Difference Between FALSE and UNKNOWN

Although neither FALSE nor UNKNOWN returns values, there is an
important logical difference between FALSE and UNKNOWN,
because the opposite of false (“not false”) is true. For example,
“1 = 2” evaluates to false and its opposite, “1 != 2”, evaluates to true.
But “not unknown” is still unknown. If null values are included in a
comparison, you cannot negate the expression to get the opposite set
of rows or the opposite truth value.

Substituting a Value for NULLs

Use the isnull built-in function to substitute a particular value for nulls.
The substitution is made only for display purposes; actual column
values are not affected. The syntax is:

isnull( expression , value )

For example, use the following statement to select all the rows from
test, and display all the null values in column t1 with the value
unknown.

select isnull(t1, "unknown")
from test

Expressions That Evaluate to NULL

An expression with an arithmetic or bitwise operator evaluates to
NULL if any of the operands are null. For example:

1 + column1

evaluates to NULL if column1 is NULL.

Concatenating Strings and NULL

If you concatenate a string and NULL, the expression evaluates to
the string. For example:

select "abc" + NULL + "def"

-----
abcdef



Transact-SQL User’s Guide 2-37

Adaptive Server Enterprise Release 11.5.x Selecting Rows: The where Clause

System-Generated NULLs

In Transact-SQL, system-generated NULLs, such as those that result
from a system function like convert, behave differently than user-
assigned NULLs. For example, in the following statement, a not
equals comparison of the user-provided NULL with 1 returns TRUE:

if (1 != NULL) print "yes" else print "no"

yes

while the same comparison with a NULL generated by the convert
function returns UNKNOWN:

if (1 != convert(integer, NULL))
print "yes" else print "no"

no

For more consistent behavior, set the ansinull option to on. Then both
system-generated and user-provided NULLs cause the comparison
to return UNKNOWN.

Connecting Conditions with Logical Operators

The logical operators and, or, and not are used to connect search
conditions in where clauses. The syntax is:

{where | having} [not]
column_name join_operator column_name

where join_operator is a comparison operator and column_name is the
name of a column used in the comparison. Qualify the name of the
column if there is any ambiguity.

and joins two or more conditions and returns results only when all of
the conditions are true. For example, the following query finds only
the rows in which the author’s last name is Ringer and the author’s
first name is Anne. It does not find the row for Albert Ringer.

select *
from authors
where au_lname = "Ringer" and au_fname = "Anne"

or also connects two or more conditions, but it returns results when
any of the conditions is true. The following query searches for rows
containing Anne or Ann in the au_fname column.

select *
from authors
where au_fname = "Anne" or au_fname = "Ann"



2-38 Queries: Selecting Data from a Table

Selecting Rows: The where Clause Adaptive Server Enterprise Release 11.5.x

You can specify up to 252 and and or conditions.

not negates the expression that follows it. The following query selects
all the authors who do not live in California:

select * from authors
where not state = "CA"

When more than one logical operator is used in a statement, and
operators are normally evaluated before or operators. You can change
the order of execution with parentheses. For example:

select * from authors
where (city = "Oakland" or city = "Berkeley") and
state = "CA"

Logical Operator Precedence

Arithmetic and bitwise operators are handled before logical
operators. When more than one logical operator is used in a
statement, not is evaluated first, then and, and finally or. See “Bitwise
Operators” on page 1-13 for information on bitwise operators.

For example, the following query finds all the business books in the
titles table, no matter what their advances are, as well as all
psychology books that have an advance of more than $5500. The
advance condition pertains to psychology books and not to business
books because the and is handled before the or.

select title_id, type, advance
from titles
where type = "business" or type = "psychology"
  and advance > 5500

title_id  type        advance
--------  ----------  ----------
BU1032    business     5,000.00
BU1111    business     5,000.00
BU2075    business    10,125.00
BU7832    business     5,000.00
PS1372    psychology   7,000.00
PS2106    psychology   6,000.00

(6 rows affected)

You can change the meaning of the query by adding parentheses to
force evaluation of the or first. This query finds all business and
psychology books that have advances of more than $5500:



Transact-SQL User’s Guide 2-39

Adaptive Server Enterprise Release 11.5.x Selecting Rows: The where Clause

select title_id, type, advance
from titles
where (type = "business" or type = "psychology")
  and advance > 5500

title_id  type         advance
--------  ----------   ---------
BU2075    business     10,125.00
PS1372    psychology    7,000.00
PS2106    psychology    6,000.00

(3 rows affected)



2-40 Queries: Selecting Data from a Table

Selecting Rows: The where Clause Adaptive Server Enterprise Release 11.5.x



Transact-SQL User’s Guide 3-1

3 Summarizing, Grouping, and Sorting
Query Results 3.

Aggregate functions display summaries of the values in specified
columns. This chapter describes how to use the following aggregate
functions: sum, avg, count, count(*), max, and min. You can also use the
group by clause, having clause, and order by clause to group and sort the
results of queries using aggregate functions. The compute clause, a
Transact-SQL extension, displays subtotals of grouped summaries.
The union operator combines the results of queries.

This chapter discusses:

• Summarizing Query Results Using Aggregate Functions   3-1

• Organizing Query Results into Groups: The group by Clause   3-7

• Selecting Groups of Data: The having Clause   3-20

• Sorting Query Results: The order by Clause   3-25

• Summarizing Groups of Data: The compute Clause   3-29

• Combining Queries: The union Operator   3-37

If your Adaptive Server is not case sensitive, see group by and having
Clauses and compute Clause in the Adaptive Server Reference Manual for
examples on how case sensitivity affects the data returned by these
clauses.

Summarizing Query Results Using Aggregate Functions

You can apply aggregate functions to all the rows in a table, to a
subset of the table specified by a where clause, or to one or more
groups of rows in the table. From each set of rows to which an
aggregate function is applied, Adaptive Server generates a single
value.

This example calculates the sum of year-to-date sales for all books in
the titles table:

select sum(total_sales)
from titles

-------------
   220591

(1 row affected)



3-2 Summarizing, Grouping, and Sorting Query Results

Summarizing Query Results Using Aggregate Functions Adaptive Server Enterprise Release 11.5.x

To use the aggregate functions, give the function name followed by
the name of the column on whose values it will operate. Put the
column name, which is the function’s argument, in parentheses.

The general syntax of the aggregate functions is:

aggregate_function  ([all|distinct] expression )

The aggregate operators are sum, avg, max, min, count, and count(*). Use
the optional keyword distinct with sum, avg, and count to eliminate
duplicate values before the aggregate function is applied. distinct is
not allowed with max, min, or count(*). For sum, avg, and count, the
default is all, which performs the operation on all rows. The keyword
all is optional.

The “expression” to which the syntax statement refers is usually a
column name. It can also be a constant, a function, or any
combination of column names, constants, and functions connected
by arithmetic or bitwise operators. A case expression can be used in
an expression. An expression can also be a subquery.

For example, with this statement you can find what the average price
of all books would be if the prices were doubled:

select avg(price * 2)
from titles

-------------
        29.53

(1 row affected)

The syntax of the aggregate functions and the results they produce
are shown in Table 3-1:

Table 3-1: Syntax and results of aggregate functions

Aggregate Function Result

sum([all|distinct] expression) The total of the (distinct) values in the
expression

avg([all|distinct] expression) The average of the (distinct) values in the
expression

count([all|distinct] expression) The number of (distinct) non-null values in the
expression

count(*) The number of selected rows

max(expression) The highest value in the expression

min(expression) The lowest value in the expression



Transact-SQL User’s Guide 3-3

Adaptive Server Enterprise Release 11.5.x Summarizing Query Results Using Aggregate Functions

The aggregate functions can be used in a select list, as in the previous
examples, or in the having clause of a select statement that includes a
group by clause. For information about the having clause, see “Selecting
Groups of Data: The having Clause” on page 3-20.

You cannot use aggregate functions in a where clause. However, a
select statement with aggregate functions in its select list often
includes a where clause that restricts the rows to which the aggregate
is applied. In the examples given earlier in this section, each
aggregate function produced a single summary value for the whole
table.

If a select statement includes a where clause, but not a group by clause,
an aggregate function produces a single value for the subset of rows
that the where clause specifies. However, a select statement can also
include a column in its select list (a Transact-SQL extension), that
repeats the single value for each row in the result table. In that case,
you can qualify the rows using the having clause, which is described
in “Selecting Groups of Data: The having Clause” on page 3-20.

This query returns the average advance and the sum of year-to-date
sales for business books only:

select avg(advance), sum(total_sales)
from titles
where type = "business"

------------- ---------
 6281.25  68,396

(1 row affected)

Whenever an aggregate function is used in a select statement that
does not include a group by clause, it produces a single value, called a
scalar aggregate. This is true whether it is operating on all the rows
in a table or on a subset of rows defined by a where clause.

You can use more than one aggregate function in the same select list,
and produce more than one scalar aggregate in a single select
statement.

Aggregate Functions and Datatypes

You can use sum and avg with numeric columns only—int, smallint,
tinyint, decimal, numeric, float, and money.

You cannot use min and max with bit datatypes.



3-4 Summarizing, Grouping, and Sorting Query Results

Summarizing Query Results Using Aggregate Functions Adaptive Server Enterprise Release 11.5.x

You cannot use aggregate functions other than count(*) with text and
image datatypes.

With these exceptions, you can use the aggregate functions with any
type of column. For example, you can use min (minimum) to find the
lowest value—the one closest to the beginning of the alphabet—in a
character type column:

select min(au_lname)
from authors

--------------------------
Bennet

(1 row affected)

Using count(*)

count(*) does not require an expression as an argument because, by
definition, it does not use information about any particular column.
Use count(*) to find the total number of rows in a table. This statement
finds the total number of books:

select count(*)
from titles

------------------
   18

(1 row affected)

count(*) returns the number of rows in the specified table without
eliminating duplicates. It counts each row separately, including rows
that contain null values.

Like other aggregate functions, you can combine count(*) with other
aggregates in the select list, with where clauses, and so on:

select count(*), avg(price)
from titles
where advance > 1000

---------- ---------
        15     14.42

(1 row affected)



Transact-SQL User’s Guide 3-5

Adaptive Server Enterprise Release 11.5.x Summarizing Query Results Using Aggregate Functions

Using Aggregate Functions with distinct

The distinct keyword is optional with sum, avg, and count. It is not
allowed with min, max, or count(*). When you use distinct, Adaptive
Server eliminates duplicate values before calculating the sum,
average, or count.

If you use distinct, you cannot include an arithmetic expression in the
argument. The argument must use a column name only. distinct
appears inside the parentheses and before the column name. For
example, to find the number of different cities in which there are
authors, type:

select count(distinct city)
from authors

-------------
           16

(1 row affected)

The following statement returns the average of the distinct prices of
business books:

select avg(distinct price)
from titles
where type = "business"

-------------
        11.64

(1 row affected)

If two or more books have the same price and you use the distinct
keyword, the shared price is included only once in the calculation.
For an accurate calculation of the average price of business books,
omit distinct:

select avg(price)
from titles
where type = "business"

-------------
        13.73

(1 row affected)



3-6 Summarizing, Grouping, and Sorting Query Results

Summarizing Query Results Using Aggregate Functions Adaptive Server Enterprise Release 11.5.x

Null Values and the Aggregate Functions

Adaptive Server ignores any null values in the column on which the
aggregate function is operating for the purposes of the function
(except count(*), which includes them). If you have set ansinull to on,
Adaptive Server returns an error message whenever a null value is
ignored. For more information, see the set command in the Adaptive
Server Reference Manual.

If all the values in a column are null, count(column_name) returns 0.
For example, if you ask for the count of advances in the titles table,
your answer is not the same as if you ask for the count of title names,
because of the null values in the advance column:

select count(advance)
from titles

-------------
           16

(1 row affected)

select count(title)
from titles

-------------
           18

(1 row affected)

The exception to this rule is count(*), which counts each row, even if
every field in it is NULL.

If no rows meet the conditions specified in the where clause, count
returns a value of 0. The other functions all return NULL. Here are
examples:

select count(distinct title)
from titles
where type = "poetry"

-------------
            0

(1 row affected)

select avg(advance)
from titles
where type = "poetry"



Transact-SQL User’s Guide 3-7

Adaptive Server Enterprise Release 11.5.x Organizing Query Results into Groups: The group by Clause

-------------
         NULL

 (1 row affected)

Organizing Query Results into Groups: The group by Clause

The group by clause divides the output of a table into groups. You can
group by one or more column names, or by the results of computed
columns using numeric datatypes in an expression. The maximum
number of columns or expressions you can use in a group by clause is
16.

➤ Note
You cannot group by columns of text or image datatypes.

A group by clause almost always appears in statements that include
aggregate functions, in which case the aggregate produces a value
for each group. These values are called vector aggregates.
(Remember, a scalar aggregate is a single value produced by an
aggregate function without a group by clause.)

In this example of a vector aggregate, the statement finds the average
advance and sum of year-to-date sales for each type of book:

select type, avg(advance), sum(total_sales)
from titles
group by type

type
------------     --------    -----
UNDECIDED            NULL     NULL
business   6,281.25    30,788
mod_cook  7,500.00    24,278
popular_comp  7,500.00    12,875
psychology  4,255.00     9,939
trad_cook  6,333.33    19,566

(6 rows affected)

The summary values (vector aggregates) produced by select
statements with aggregates and a group by appear as columns in each
row of the results. By contrast, the summary values (scalar
aggregates) produced by select statements with aggregates and no
group by also appear as columns, but with only one row. For example:



3-8 Summarizing, Grouping, and Sorting Query Results

Organizing Query Results into Groups: The group by Clause Adaptive Server Enterprise Release 11.5.x

select avg(advance), sum(total_sales)
from titles

---------   -------
5962.50 220591

(1 row affected)

While it is possible to use group by without aggregates, such a
construction has very limited functionality and sometimes produces
confusing results. The following example attempts to group the
results by title type:

select type, advance
from titles
group by type

type             advance
------------     ---------
business   5,000.00
business   5,000.00
business    10,125.00
business     5,000.00
mod_cook              0.00
mod_cook   15,000.00
UNDECIDED             NULL
popular_comp   7,000.00
popular_comp    8,000.00
popular_comp          NULL
psychology    7,000.00
psychology    2,275.00
psychology   6,000.00
psychology   2,000.00
psychology   4,000.00
trad_cook   7,000.00
trad_cook   4,000.00
trad_cook   8,000.00

(18 rows affected)

Without an aggregate for the advance column, the query returns
values for every row in the table.

group by Syntax

The complete syntax of the select statement is repeated here so that
you can see the group by clause in context:



Transact-SQL User’s Guide 3-9

Adaptive Server Enterprise Release 11.5.x Organizing Query Results into Groups: The group by Clause

select [all | distinct] select_list
[into [[ database .] owner .] table_name ]
[from [[ database .] owner .]{ view_name | table_name
    [(index { index_name  | table_name  }
        [parallel [ degree_of_parallelism ]]
        [prefetch size  ][lru|mru])]}
    [holdlock | noholdlock] [shared]
 [,[[ database .] owner .]{ view_name | table_name
    [(index { index_name  | table_name  }
        [parallel [ degree_of_parallelism ]]
        [prefetch size  ][lru|mru])]}
     [holdlock | noholdlock] [shared]]... ]

[where search_conditions ]

[group by [all] aggregate_free_expression
    [, aggregate_free_expression ]... ]
[having search_conditions ]

[order by
{[[[ database .] owner .]{ table_name .| view_name .}]

column_name  |  select_list _number |  expression }
        [asc | desc]
[,{[[[ database .] owner .]{ table_name | view_name .}]
    column_name  |  select_list_number  | expression }
        [asc | desc]]...]

[compute row_aggregate ( column_name )
        [, row_aggregate ( column_name )]...
    [by column_name  [, column_name ]...]]

[for {read only | update [of column_name_list ]}]

[at isolation {read uncommitted | read committed |
     serializable}]

[for browse]

Remember that the order of the clauses in the select statement is
significant. You can omit any of the optional clauses, but when you
use them, they must appear in the order shown above.

group by and SQL Standards

The SQL standards for group by are more restrictive than what is
shown in the above syntax. The standard requires that:



3-10 Summarizing, Grouping, and Sorting Query Results

Organizing Query Results into Groups: The group by Clause Adaptive Server Enterprise Release 11.5.x

• The columns in a select list must be in the group by expression or
they must be arguments of aggregate functions.

• A group by expression can only contain column names in the select
list, but not those used only as arguments for vector aggregates.

The results of a standard group by with vector aggregate functions
produce one row and one summary value per group. Several
Transact-SQL extensions (described in the following sections) relax
these restrictions, but at the expense of more complex results. To
refrain from using the extensions, set the fipsflagger option as follows:

set fipsflagger on

Nesting Groups with group by

This option displays a warning message whenever Transact-SQL
extensions are used. For more information about the fipsflagger
option, see the set command in the Adaptive Server Reference Manual.

You can list more than one column in the group by clause in order to
nest groups—that is, you can group a table by any combination of
columns. For example, here is the statement that finds the average
price and the sum of the year-to-date sales, grouped first by
publisher identification number and then by type:

select pub_id, type, avg(price), sum(total_sales)
from titles
group by pub_id, type

pub_id  type
------  ------------  ------  -------
0736    business       2.99 18,722
0736    psychology    11.48  9,564
0877    UNDECIDED      NULL    NULL
0877    mod_cook      11.49 24,278
0877    psychology    21.59     375
0877    trad_cook     15.96  19,566
1389    business      17.31 12,066
1389    popular_comp  21.48  12,875

(8 rows affected)

You can nest many groups within groups, up to the maximum of 16
columns or expressions specified with group by.



Transact-SQL User’s Guide 3-11

Adaptive Server Enterprise Release 11.5.x Organizing Query Results into Groups: The group by Clause

Referencing Other Columns in Queries Using group by

Through the following extensions to the SQL standards, Transact-
SQL does not place restrictions on what you can include or omit in
the select list of a select statement that includes group by:

• The columns in the select list are not limited to the grouping
columns and columns used with the vector aggregates.

• The columns specified by group by are not limited to those non-
aggregate columns in the select list.

A vector aggregate requires that one or more columns appear with
the group by clause. The SQL standards require that the non-aggregate
columns in the select list match the group by columns. However, the
first bulleted item described above allows you to specify additional
“extended” columns in the select list of the query.

For example, many versions of SQL do not allow the inclusion of the
extended title_id column in the select list, but it is legal in Transact-
SQL:

select type, title_id, avg(price), avg(advance)
from titles
group by type

type           title_id
------------   --------    -----   -------
business       BU1032      13.73 6,281.25
business       BU1111      13.73 6,281.25
business       BU2075      13.73  6,281.25
business       BU7832      13.73  6,281.25
mod_cook       MC2222      11.49 7,500.00
mod_cook       MC3021      11.49 7,500.00
UNDECIDED      MC3026      NULL   NULL
popular_comp   PC1035      21.48 7,500.00
popular_comp   PC8888      21.48  7,500.00
popular_comp   PC9999      21.48  7,500.00
psychology     PS1372      13.50 4,255.00
psychology     PS2091      13.50 4,255.00
psychology     PS2106      13.50 4,255.00
psychology     PS3333      13.50  4,255.00
psychology     PS7777      13.50 4,255.00
trad_cook      TC3218      15.96 6,333.33
trad_cook      TC4203      15.96 6,333.33
trad_cook      TC7777      15.96  6,333.33

(18 rows affected)



3-12 Summarizing, Grouping, and Sorting Query Results

Organizing Query Results into Groups: The group by Clause Adaptive Server Enterprise Release 11.5.x

The above example still aggregates the price and advance columns
based on the type column, but its results also display the title_id for
the books included in each group.

The second extension described above allows you to group columns
that are not specified as columns in the select list of the query. These
columns do not appear in the results, but the vector aggregates still
compute their summary values. For example:

select state, count(au_id)
from authors
group by state, city

state
-----  --------
AU            1
CA            2
CA            1
CA            5
CA            2
CA            1
CA            1
CA            1
CA            1
IN            1
KS            1
MD            1
MI            1
OR            1
TN            1
UT            2

(16 rows affected)

This example groups the vector aggregate results by both state and
city, even though it does not display which city belongs to each
group.

As you can see, the results from such queries using these extensions
are more complex. The queries require you to know how Adaptive
Server treats these extensions for you to understand the results. For
example, you may think the following query should produce similar
results to the previous query, since only the vector aggregate seems
to tally the number of each city for each row:

select state, count(au_id)
from authors
group by city



Transact-SQL User’s Guide 3-13

Adaptive Server Enterprise Release 11.5.x Organizing Query Results into Groups: The group by Clause

However, its results are much different (and misleading). By not
using group by with both the state and city columns, the query tallies
the number of each city, but it displays the tally for each row of that
city in authors rather than group them into one result row per city.

When you use the Transact-SQL extensions in complex queries that
include the where clause or joins, the results may become even more
difficult to comprehend. To avoid confusing or misleading results
with group by, do not use the extensions frivolously. Use the fipsflagger
option to identify queries that use these extensions. See “group by
and SQL Standards” on page 3-9 for details.

For more information about Transact-SQL extensions to group by and
how they work, see “group by and having Clauses” in the Adaptive
Server Reference Manual.

Expressions and group by

Another Transact-SQL extension to SQL is that you can group by an
expression that does not include aggregate functions. With standard
SQL, you can group only by column names. For example:

select avg(total_sales), total_sales * price
from titles
group by total_sales * price

---------      -------------
     NULL               NULL
      111 777.00
      375  7,856.25
      375   8,096.25
     2045   22,392.75
     3336   26,654.64
     2032  40,619.68
     3876  46,318.20
    18722  55,978.78
     4095  61,384.05
    22246  66,515.54
     4072  81,399.28
     4095   81,859.05
     4095   81,900.00
    15096  180,397.20
     8780  201,501.00

(16 rows affected)



3-14 Summarizing, Grouping, and Sorting Query Results

Organizing Query Results into Groups: The group by Clause Adaptive Server Enterprise Release 11.5.x

You cannot group by a column heading or alias, although you can still
use aliases in your select list. This statement produces an error
message:

select Category = type, title_id, avg(price),
avg(advance)
from titles
group by Category

The group by clause should be “group by type”, not “group by Category”.

Nesting Aggregates with group by

Another kind of nesting—nesting a vector aggregate inside a scalar
aggregate—is a Transact-SQL extension. For example, to find the
average price of all the types of books, the query is:

select avg(price)
from titles
group by type

---------------
NULL

13.73
11.49
21.48
13.50
15.96

(6 rows affected)

You can find the highest average price of a group of books, grouped
by type, in a single query by nesting the average price inside the max
function:

select max(avg(price))
from titles
group by type

-------------
        21.48

(1 row affected)

By definition, the group by clause applies to the innermost aggregate—
in this case, avg.



Transact-SQL User’s Guide 3-15

Adaptive Server Enterprise Release 11.5.x Organizing Query Results into Groups: The group by Clause

Null Values and group by

If the grouping column contains a null value, that row becomes a
group in the results. If the grouping column contains more than one
null value, the null values form a single group.

The advance column in the titles table contains some null values.
Here’s an example that uses group by and the advance column:

select advance, avg(price * 2)
from titles
group by advance

advance
------------------  -----------------
             NULL               NULL
             0.00              39.98

  2000.00              39.98
  2275.00              21.90
  4000.00              19.94
  5000.00              34.62

 6000.00              14.00
 7000.00              43.66
 8000.00              34.99

 10125.00               5.98
 15000.00               5.98

(11 rows affected)

If you are using the count(column_name) aggregate function, grouping
by a column that contains null values will return a count of zero for
the grouping row, since count(column_name) does not count null
values. In most cases, you should use count(*) instead. This example
groups and counts on the price column from the titles table, which
contains null values, and shows count(*) for comparison:

select price, count(price), count(*)
from titles
group by price



3-16 Summarizing, Grouping, and Sorting Query Results

Organizing Query Results into Groups: The group by Clause Adaptive Server Enterprise Release 11.5.x

price
------------- ----- -----
        NULL     0     2
        2.99     2     2
        7.00     1     1
        7.99     1     1
       10.95     1     1
       11.95     2     2
       14.99     1     1
       19.99     4     4
       20.00     1     1
       20.95     1     1
       21.59     1     1
       22.95     1     1

(12 rows affected)

where Clause and group by

You can use a where clause in a statement with group by. Rows that do
not satisfy the conditions in the where clause are eliminated before
any grouping is done. Here is an example:

select type, avg(price)
from titles
where advance > 5000
group by type

type
-------------    --------
business            2.99
mod_cook            2.99
popular_comp       21.48
psychology         14.30
trad_cook          17.97

(5 rows affected)

Only the rows with advances of more than $5000 are included in the
groups that are used to produce the query results. The values are
very different when you run the query without the where clause.

However, the way that Adaptive Server handles extra columns in the
select list and the where clause may seem contradictory. For example:

select type, advance, avg(price)
from titles
where advance > 5000
group by type



Transact-SQL User’s Guide 3-17

Adaptive Server Enterprise Release 11.5.x Organizing Query Results into Groups: The group by Clause

type           advance
-------------  ---------  --------
business   5,000.00      2.99
business   5,000.00      2.99
business   10,125.00      2.99
business    5,000.00      2.99
mod_cook            0.00      2.99
mod_cook   15,000.00      2.99
popular_comp  7,000.00     21.48
popular_comp  8,000.00     21.48
popular_comp        NULL     21.48
psychology  7,000.00     14.30
psychology   2,275.00     14.30
psychology  6,000.00     14.30
psychology  2,000.00     14.30
psychology  4,000.00     14.30
trad_cook  7,000.00     17.97
trad_cook   4,000.00     17.97
trad_cook  8,000.00     17.97

(17 rows affected)

It only seems as if the query is ignoring the where clause when you
look at the results for the advance (extended) column. Adaptive
Server still computes the vector aggregate using only those rows that
satisfy the where clause, but it also displays all rows for any extended
columns that you include in the select list. To further restrict these
rows from the results, you must use a having clause (described later in
this chapter).

For more information about how Adaptive Server handles the where
clause and group by, see “where Clause” and “group by and having
Clauses” in the Adaptive Server Reference Manual.

group by and all

The keyword all in the group by clause is a Transact-SQL enhancement
to SQL. It is meaningful only if the select statement in which it is used
also includes a where clause.

If you use all, the query results will include all the groups produced
by the group by clause, even if some of the groups do not have any
rows that meet the search conditions. Without all, a select statement
that includes group by does not show groups for which no rows
qualify.



3-18 Summarizing, Grouping, and Sorting Query Results

Organizing Query Results into Groups: The group by Clause Adaptive Server Enterprise Release 11.5.x

Here is an example:

select type, avg(advance)
from titles
where advance > 1000 and advance < 10000
group by type

type
------------  ------------------------
business    5,000.00
popular_comp    7,500.00
psychology   4,255.00
trad_cook   6,333.33

(4 rows affected)

select type, avg(advance)
from titles
where advance > 1000 and advance < 10000
group by all type

type
------------  ------------------------
UNDECIDED      NULL
business     5,000.00
mod_cook       NULL
popular_comp    7,500.00
psychology    4,255.00
trad_cook    6,333.33

(6 rows affected)

The first statement produces groups only for those books that
commanded advances of more than $1000 but less than $10,000.
Since no modern cooking books have an advance within that range,
there is no group in the results for the mod_cook type.

The second statement produces groups for all types, including
modern cooking and “UNDECIDED,” even though the modern
cooking group does not include any rows that meet the qualification
specified in the where clause. Adaptive Server returns a NULL result
for these rows.

The column that holds the aggregate value (the average advance) is
for groups that lack qualifying rows.

Using Aggregates Without group by

By definition, scalar aggregates apply to all rows in a table,
producing a single value for the whole table for each function. The



Transact-SQL User’s Guide 3-19

Adaptive Server Enterprise Release 11.5.x Organizing Query Results into Groups: The group by Clause

Transact-SQL extension that allows you to include extended
columns with vector aggregates also allows you to include extended
columns with scalar aggregates. For example:

select pub_id, count(pub_id)
from publishers

pub_id
---------- ---------
0736               3
0877               3
1389               3

(3 rows affected)

Adaptive Server treats publishers as a single group, and the scalar
aggregate applies to the (single-group) table. The results display
every row of the table for each column you include in the select list in
addition to the scalar aggregate.

The where clause behaves the same way for scalar aggregates as with
vector aggregates. The where clause restricts the columns included in
the aggregate summary values, but it does not affect the rows that
appear in the results for each extended column you specify in the
select list. For example:

select pub_id, count(pub_id)
from publishers
where pub_id < "1000"

pub_id
-------------- -----------
0736                    2
0877                    2
1389                    2

(3 rows affected)

Like the other Transact-SQL extensions to group by, this extension to
scalar aggregates provides results that may be difficult to
comprehend, especially for queries on large tables or queries with
multitable joins.



3-20 Summarizing, Grouping, and Sorting Query Results

Selecting Groups of Data: The having Clause Adaptive Server Enterprise Release 11.5.x

Selecting Groups of Data: The having Clause

Use the having clause to display or reject rows defined by the group by
clause. It sets conditions for the group by clause similar to the way in
which where sets conditions for the select clause.

having search conditions are identical to where search conditions
except that where search conditions cannot include aggregates, while
having search conditions often do. The example below is legal:

having avg(price) > $20

But this example is not:

where avg(price) > $20

having clauses can reference any of the items that appear in the select
list.

This statement is an example of a having clause with an aggregate
function. It groups the rows in the titles table by type, but eliminates
the groups that include only one book:

select type
from titles
group by type
having count(*) > 1

type
----------------
business
mod_cook
popular_comp
psychology
trad_cook

(5 rows affected)

Here is an example of a having clause without aggregates. It groups
the titles table by type and displays only those types that start with
the letter “p”:

select type
from titles
group by type
having type like "p%"



Transact-SQL User’s Guide 3-21

Adaptive Server Enterprise Release 11.5.x Selecting Groups of Data: The having Clause

type
------------
popular_comp
psychology

(2 rows affected)

When more than one condition is included in the having clause, they
are combined with and, or, or not. For example, to group the titles table
by publisher, and to include only those publishers who have paid
more than $15,000 in total advances, whose books average less than
$18 in price, and whose identification numbers (pub_id) are greater
than 0800, the statement is:

select pub_id, sum(advance), avg(price)
from titles
group by pub_id
having sum(advance) > 15000
  and avg(price) < 18
  and pub_id > "0800"

pub_id
------  ---------------- ----------------
0877          41,000.00            15.41

(1 row affected)

How the having, group by, and where Clauses Interact

When you include the having, group by, and where clauses in a query, the
sequence in which each clause affects the rows in the table is
significant when determining the final results:

• The where clause excludes rows that do not meet its search
conditions.

• The group by clause collects the remaining rows into one group for
each unique value in the group by expression.

• Aggregate functions specified in the select list calculate summary
values for each group.

• The having clause excludes rows from the final results that do not
meet its search conditions.

The following query illustrates the use of where, group by, and having
clauses in one select statement:



3-22 Summarizing, Grouping, and Sorting Query Results

Selecting Groups of Data: The having Clause Adaptive Server Enterprise Release 11.5.x

select stor_id, title_id, sum(qty)
from salesdetail
where title_id like "PS%"
group by stor_id, title_id
having sum(qty) > 200

stor_id  title_id
-------  --------  -----------
5023     PS1372            375
5023     PS2091   1,845
5023     PS3333  3,437
5023     PS7777  2,206
6380     PS7777            500
7067     PS3333            345
7067     PS7777            250

(7 rows affected)

The where clause includes only rows that have a title_id beginning
with “PS” (psychology books), before group by collects the rows by
common stor_id and title_id. The sum aggregate calculates the total
number of books sold for each group, and then the having clause
excludes the groups whose totals do not exceed 200 books from the
final results.

All of the previous having examples adhere to the SQL standards,
which specify that columns in a having expression must have a single
value, and must be in the select list or group by clause. However, the
Transact-SQL extensions to having allow columns or expressions not
in the select list and not in the group by clause.

The following example uses this extension. It determines the average
price for each title type, but it excludes those types that do not have
more than $10,000 in total sales, even though the sum aggregate does
not appear in the results.

select type, avg(price)
from titles
group by type
having sum(total_sales) > 10000

type
------------  ----------
business           13.73
mod_cook           11.49
popular_comp       21.48
trad_cook          15.96

(4 rows affected)



Transact-SQL User’s Guide 3-23

Adaptive Server Enterprise Release 11.5.x Selecting Groups of Data: The having Clause

The extension behaves as if the column or expression were part of the
select list but not part of the displayed results. If you include an
unaggregated column with having, but it is not part of the select list or
the group by clause, the query produces results similar to the
“extended” column extension described earlier in this chapter. For
example:

select type, avg(price)
from titles
group by type
having total_sales > 4000

type
------------  ----------
business           13.73
business           13.73
business           13.73
mod_cook           11.49
popular_comp       21.48
popular_comp       21.48
psychology         13.50
trad_cook          15.96
trad_cook          15.96

(9 rows affected)

Unlike an extended column, the total_sales column does not appear
in the final results, yet the number of displayed rows for each type
depends on the total_sales for each title. The query indicates that
three business, one mod_cook, two popular_comp, one psychology,
and two trad_cook titles exceed $4000 in total sales.

As mentioned earlier, the way Adaptive Server handles extended
columns may seem as if the query is ignoring the where clause in the
final results. To make the where conditions affect the results for the
extended column, you should repeat the conditions in the having
clause. For example:

select type, advance, avg(price)
from titles
where advance > 5000
group by type
having advance > 5000



3-24 Summarizing, Grouping, and Sorting Query Results

Selecting Groups of Data: The having Clause Adaptive Server Enterprise Release 11.5.x

type           advance
-------------  ---------  --------
business       10,125.00      2.99
mod_cook       15,000.00      2.99
popular_comp    7,000.00     21.48
popular_comp    8,000.00     21.48
psychology      7,000.00     14.30
psychology      6,000.00     14.30
trad_cook       7,000.00     17.97
trad_cook       8,000.00     17.97

(8 rows affected)

Using having Without group by

A query with a having clause should also have a group by clause. If group
by is omitted, all the rows not excluded by the where clause are
considered to be a single group.

Because no grouping is done between the where and having clauses,
they cannot act independently of each other. having acts like where
because it affects the rows in a single group rather than groups,
except the having clause can still use aggregates.

The following example uses the having clause to exclude from the
results those rows in the single group table titles whose price does
not exceed the average price of all titles, after the where clause
excludes the titles with advances of more than $4000 from the
computation of the average price:

select title_id, advance, price
from titles
where advance < 4000
having price > avg(price)

title_id        advance    price
-------------  ---------  --------
BU1032          5,000.00     19.99
BU7832          5,000.00     19.99
MC2222              0.00     19.99
PC1035          7,000.00     22.95
PC8888          8,000.00     20.00
PS1372          7,000.00     21.59
PS3333          2,000.00     19.99
TC3218          7,000.00     20.95

(8 rows affected)



Transact-SQL User’s Guide 3-25

Adaptive Server Enterprise Release 11.5.x Selecting Groups of Data: The having Clause

You can also use the having clause with the Transact-SQL extension
that allows you to omit the group by clause from a query that includes
an aggregate in its select list. These scalar aggregate functions
calculate values for the table as a single group, not for groups within
the table.

In this example, omitting the group by clause makes the aggregate
function calculate a value for the whole table. The having clause
excludes rows from the result group, that is, rows of the single group.

select pub_id, count(pub_id)
from publishers
having pub_id < "1000"

pub_id
------ ----------------
0736                  3
0877                  3

(2 rows affected)

For more information about queries that use having and omit group by,
see the Adaptive Server Reference Manual.

Sorting Query Results: The order by Clause

The order by clause allows sorting of query results by one or more
columns. The maximum number of columns is 16. Each sort can be
ascending (asc) or descending (desc). If neither is specified, asc is
assumed. The following query returns results ordered by pub_id:

select pub_id, type, title_id
from titles
order by pub_id

pub_id  type             title_id
------  ------------     --------
0736    business         BU2075
0736    psychology       PS2091
0736    psychology       PS2106
0736    psychology       PS3333
0736    psychology       PS7777
0877    UNDECIDED        MC3026
0877    mod_cook         MC2222
0877    mod_cook         MC3021
0877    psychology       PS1372
0877    trad_cook        TC3218



3-26 Summarizing, Grouping, and Sorting Query Results

Selecting Groups of Data: The having Clause Adaptive Server Enterprise Release 11.5.x

0877    trad_cook        TC4203
0877    trad_cook        TC7777
1389    business         BU1032
1389    business         BU1111
1389    business         BU7832
1389    popular_comp     PC1035
1389    popular_comp     PC8888
1389    popular_comp     PC9999

(18 rows affected)

If you name more than one column in the order by clause, Adaptive
Server nests the sorts. The following statement sorts the rows in the
titles table first by publisher in descending order, then by type
(ascending) within each publisher, and finally by title number (also
ascending, since desc is not specified). Adaptive Server sorts null
values first within any group.

select pub_id, type, title_id
from titles
order by pub_id desc, type, title_id

pub_id    type           title_id
------    ----------     --------
1389      business       BU1032
1389      business       BU1111
1389      business       BU7832
1389      popular_comp   PC1035
1389      popular_comp   PC8888
1389      popular_comp   PC9999
0877      UNDECIDED      MC3026
0877      mod_cook       MC2222
0877      mod_cook       MC3021
0877      psychology     PS1372
0877      trad_cook      TC3218
0877      trad_cook      TC4203
0877      trad_cook      TC7777
0736      business       BU2075
0736      psychology     PS2091
0736      psychology     PS2106
0736      psychology     PS3333
0736      psychology     PS7777

(18 rows affected)

You can use the position number of a column in a select list instead of
the column name. Column names and select list numbers can be
mixed. Both of the following statements produce the same results as
the preceding one.



Transact-SQL User’s Guide 3-27

Adaptive Server Enterprise Release 11.5.x Selecting Groups of Data: The having Clause

select pub_id, type, title_id
from titles
order by 1 desc, 2, 3

select pub_id, type, title_id
from titles
order by 1 desc, type, 3

Most versions of SQL require that order by items appear in the select
list, but Transact-SQL has no such restriction. You could order the
results of the preceding query by title, although that column does not
appear in the select list.

➤ Note
You cannot use order by on text or image columns.

Adaptive Server does not allow subqueries, aggregates, variables
and constant expressions in the order by list.

With order by, null values come before all others.

The effects of an order by clause on mixed-case data depend on the sort
order installed on your Adaptive Server. The basic choices are
binary, dictionary order, and case-insensitive. The system procedure
sp_helpsort displays the sort order for your server. See “order by
Clause” in the Adaptive Server Reference Manual for more information
on sort orders.

order by and group by

You can use an order by clause to order the results of a group by in a
particular way.

Put the order by clause after the group by clause. For example, to find the
average price of each type of book and order the results by average
price, the statement is:

select type, avg(price)
from titles
group by type
order by avg(price)



3-28 Summarizing, Grouping, and Sorting Query Results

Selecting Groups of Data: The having Clause Adaptive Server Enterprise Release 11.5.x

type
---------- ------------
UNDECIDED           NULL
mod_cook          11.49
psychology        13.50
business          13.73
trad_cook         15.96
popular_comp      21.48

(6 rows affected)

order by and group by Used with and select distinct

A select distinct query with order by or group by can return duplicate
values if the order by or group by column is not in the select list. For
example:

select distinct pub_id
from titles
order by type

pub_id
------
0877
0736
1389
0877
1389
0736
0877
0877

(8 rows affected)

If a select has an order by or group by clause that includes columns not in
the select list, Adaptive Server adds those columns as hidden
columns in the columns being processed. The columns listed in the
order by or group by clause are included in the test for distinct rows. To
comply with ANSI standards, include the order by or group by column
in the select list. For example:

select distinct pub_id, type
from titles
order by type



Transact-SQL User’s Guide 3-29

Adaptive Server Enterprise Release 11.5.x Summarizing Groups of Data: The compute Clause

pub_id type
------ ------------
0877   UNDECIDED
0736   business
1389   business
0877   mod_cook
1389   popular_comp
0736   psychology
0877   psychology
0877   trad_cook

(8 rows affected)

Summarizing Groups of Data: The compute Clause

The compute clause is a Transact-SQL extension of SQL. Use it with
row aggregates to produce reports that show subtotals of grouped
summaries. Such reports, usually produced by a report generator,
are called control-break reports, since summary values appear in the
report under the control of the groupings (“breaks”) you specify in
the compute clause.

These summary values appear as additional rows in the query
results, unlike the aggregate results of a group by clause, which appear
as new columns.

A compute clause allows you to see detail and summary rows with
one select statement. You can calculate summary values for
subgroups and you can calculate more than one row aggregate for
the same group.

The general syntax for compute is:

compute row_aggregate ( column_name )
  [, row_aggregate ( column_name )]...
  [by column_name  [, column_name ]...]

The row aggregates you can use with compute are sum, avg, min, max,
and count. sum and avg are used with numeric columns only. Unlike
the order by clause, you cannot use the positional number of a column
from the select list instead of the column name.

➤ Note
You cannot use text or image columns in a compute clause.



3-30 Summarizing, Grouping, and Sorting Query Results

Summarizing Groups of Data: The compute Clause Adaptive Server Enterprise Release 11.5.x

Following are two queries and their results. The first one uses group by
and aggregates. The second uses compute and row aggregates. Notice
the difference in the displays.

select type, sum(price), sum(advance)
from titles
group by type

type
------------   -------    ----------
UNDECIDED         NULL         NULL
business         54.92    25,125.00
mod_cook         22.98    15,000.00
popular_comp     42.95    15,000.00
psychology       67.52    21,275.00
trad_cook        47.89    19,000.00

(6 rows affected)

select type, price, advance
from titles
order by type
compute sum(price), sum(advance) by type

type         price                    advance
------------ ------------------------ --------
UNDECIDED    NULL                     NULL

Compute Result:
------------------------ ------------------------
                   NULL                      NULL

type         price                advance
------------ -------------------- ----------
business     2.99                 10,125.00
business    11.95                  5,000.00
business    19.99                  5,000.00
business    19.99                  5,000.00

Compute Result:
------------------------ ------------------------
                   54.92                25,125.00
type         price                   advance
------------ ----------------------- ---------
mod_cook      2.99                   15,000.00
mod_cook     19.99                        0.00



Transact-SQL User’s Guide 3-31

Adaptive Server Enterprise Release 11.5.x Summarizing Groups of Data: The compute Clause

Compute Result:
------------------------ ------------------------
                   22.98                15,000.00

type          price               advance
------------- ------------------- ------------
popular_comp  NULL                        NULL
popular_comp  20.00                   8,000.00
popular_comp  22.95                   7,000.00

Compute Result:
------------------------ ------------------------
                   42.95                15,000.00

type         price                    advance
------------ ------------------------ --------
psychology    7.00                    6,000.00
psychology    7.99                    4,000.00
psychology   10.95                    2,275.00
psychology   19.99                    2,000.00
psychology   21.59                    7,000.00

Compute Result:
------------------------ ------------------------
                    67.52               21,275.00

type         price                   advance
------------ ----------------------- --------
trad_cook    11.95                   4,000.00
 trad_cook   14.99                   8,000.00
 trad_cook   20.95                   7,000.00

Compute Result:
------------------------ ------------------------
                    47.89               19,000.00

(24 rows affected)

The summary values are treated as new rows, which is why
Adaptive Server’s message says “24 rows affected.”



3-32 Summarizing, Grouping, and Sorting Query Results

Summarizing Groups of Data: The compute Clause Adaptive Server Enterprise Release 11.5.x

Row Aggregates and compute

The row aggregates used with compute are listed in Table 3-2:

These row aggregates are the same aggregates that can be used with
group by, except that there is no row aggregate function that is the
equivalent of count(*). To find the summary information produced by
group by and count(*), use a compute clause without the by keyword.

Rules for compute Clauses

• Adaptive Server does not allow the distinct keyword with the row
aggregates.

• The columns in a compute clause must appear in the statement’s
select list.

• You cannot use select into in the same statement as a compute clause
because statements that include compute do not generate normal
rows.

• If you use compute with the by keyword, you must also use an order
by clause. The columns listed after by must be identical to, or a
subset of, those listed after order by, and must be in the same left-
to-right order, start with the same expression, and not skip any
expressions.

For example, suppose the order by clause is:

order by a, b , c

The compute clause can be any or all of these:

compute row_aggregate  ( column_name ) by a, b, c

compute row_aggregate  ( column_name ) by a, b

Table 3-2: How aggregates are used with a compute statement

Row
Aggregates Result

sum Total of the values in the expression

avg Average of the values in the expression

max Highest value in the expression

min Lowest value in the expression

count Number of selected rows



Transact-SQL User’s Guide 3-33

Adaptive Server Enterprise Release 11.5.x Summarizing Groups of Data: The compute Clause

compute row_aggregate  ( column_name ) by a

The compute clause cannot be any of these:

compute row_aggregate  ( column_name ) by b, c

compute row_aggregate  ( column_name ) by a, c

compute row_aggregate  ( column_name ) by c

You must use a column name or an expression in the order by
clause; you cannot sort by a column heading.

• The compute keyword can be used without by to generate grand
totals, grand counts, and so on. order by is optional if you use the
compute keyword without by. The compute keyword without by is
discussed under “Grand Values: compute Without by” on page
3-36.

Specifying More Than One Column After compute

Listing more than one column after the by keyword breaks a group
into subgroups and applies the specified row aggregate to each level
of grouping. For example, here is a query that finds the sum of the
prices of psychology books from each publisher:

select type, pub_id, price
from titles
where type = "psychology"
order by type, pub_id, price
compute sum(price) by type, pub_id

type        pub_id  price
----------- ------- -------------
psychology    0736           7.00
psychology    0736           7.99
psychology    0736          10.95
psychology    0736          19.99

Compute Result:
---------------
          45.93



3-34 Summarizing, Grouping, and Sorting Query Results

Summarizing Groups of Data: The compute Clause Adaptive Server Enterprise Release 11.5.x

type        pub_id  price
----------- ------- -------------
psychology    0877          21.59

Compute Result:
---------------
          21.59

(7 rows affected)

Using More Than One compute Clause

You can use different aggregates in the same statement by including
more than one compute clause. The following query is similar to the
preceding one. It finds the sum of the prices of all psychology books,
as well as the sum of the prices of psychology books by publisher:

select type, pub_id, price
from titles
where type = "psychology"
order by type, pub_id, price
compute sum(price) by type, pub_id
compute sum(price) by type

type        pub_id  price
----------- ------- --------------
psychology    0736           7.00
psychology    0736           7.99
psychology    0736          10.95
psychology    0736          19.99

Compute Result:
---------------
          45.93

type        pub_id  price
 ---------- ------- --------------
 psychology    0877         21.59

Compute Result:
---------------
          21.59

Compute Result:
---------------
           67.52

(8 rows affected)



Transact-SQL User’s Guide 3-35

Adaptive Server Enterprise Release 11.5.x Summarizing Groups of Data: The compute Clause

Applying an Aggregate to More Than One Column

One compute clause can apply the same aggregate to several columns.
This query finds the sum of the prices and advances for each type of
cookbook:

select type, price, advance
from titles
where type like "%cook"
order by type
compute sum(price), sum(advance) by type

type      price            advance
--------- ---------------- ---------------
mod_cook              2.99       15,000.00
mod_cook             19.99            0.00

Compute Result:
--------------- ---------------
          22.98       15,000.00

type      price            advance
--------- ---------------- ---------------
trad_cook            11.95        4,000.00
trad_cook            14.99        8,000.00
trad_cook            20.95        7,000.00

Compute Result:
--------------- ---------------
          47.89       19,000.00

(7 rows affected)

Remember, the columns to which the aggregates apply must also be
in the select list.

Using Different Aggregates in the Same compute Clause

You can use different aggregates in the same compute clause:

select type, pub_id, price
from titles
where type like "%cook"
order by type, pub_id
compute sum(price), max(pub_id) by type



3-36 Summarizing, Grouping, and Sorting Query Results

Summarizing Groups of Data: The compute Clause Adaptive Server Enterprise Release 11.5.x

type        pub_id  price
----------- ------- --------------
mod_cook    0877             2.99
mod_cook    0877            19.99

Compute Result:
--------------- ----
          22.98 0877

type        pub_id  price
----------- ------- --------------
trad_cook   0877            11.95
trad_cook   0877            14.99
trad_cook   0877            20.95

Compute Result:
--------------- ----
          47.89 0877

(7 rows affected)

Grand Values: compute Without by

You can use the compute keyword without by to generate grand totals,
grand counts, and so on.

This statement finds the grand total of the prices and advances of all
types of books that cost more than $20:

select type, price, advance
from titles
where price > $20
compute sum(price), sum(advance)

type         price            advance
------------ ----------------  -------------
popular_comp            22.95      7,000.00
psychology              21.59      7,000.00
trad_cook               20.95      7,000.00

Compute Result:
--------------- ---------
          65.49 21,000.00

(4 rows affected)

You can use a compute with by and a compute without by in the same
query. The following query finds the sum of prices and advances by



Transact-SQL User’s Guide 3-37

Adaptive Server Enterprise Release 11.5.x Combining Queries: The union Operator

type and then computes the grand total of prices and advances for all
types of books.

select type, price, advance
from titles
where type like "%cook"
order by type
compute sum(price), sum(advance) by type
compute sum(price), sum(advance)

type         price                advance
-----------  -----------------    ------------
mod_ cook                 2.99       15,000.00
mod_cook                 19.99            0.00

Compute Result:
--------------- ---------
          22.98 15,000.00

type         price                advance
-----------  -----------------    ------------
trad_cook                11.95        4,000.00
trad_cook                14.99        8,000.00
trad_cook                20.95        7,000.00

Compute Result:
--------------- ---------
          47.89 19,000.00

Compute Result:
--------------- ---------
          70.87 34,000.00

(8 rows affected)

Combining Queries: The union Operator

The union operator combines the results of two or more queries into a
single result set. The Transact-SQL extension to union lets you
perform the following tasks:

• You can use union in the select clause of an insert statement.

• You can specify new column headings in the order by clause of a
select statement when union is present in the select statement.



3-38 Summarizing, Grouping, and Sorting Query Results

Combining Queries: The union Operator Adaptive Server Enterprise Release 11.5.x

The syntax of the union operator is as follows:

query1
[union [all] queryN ] ...
[order by clause]
[compute clause]

where query1 is:

select select_list
[into clause ]
[from clause ]
[where clause ]
[group by clause ]
[having clause ]

and queryN is:

select select_list
[from clause ]
[where clause ]
[group by clause ]
[having clause ]

For example, suppose you have the following two tables containing
the data shown:

The following query creates a union between the two tables:

select * from T1
union
select * from T2

a     b
----  ---------
abc           1
def           2
ghi           3
jkl           4
mno           5

(5 rows affected)

Table T1

a b

char(4) int

abc 1

def 2

ghi 3

Table T2

a b

char(4) int

ghi 3

jkl 4

mno 5



Transact-SQL User’s Guide 3-39

Adaptive Server Enterprise Release 11.5.x Combining Queries: The union Operator

By default, the union operator removes duplicate rows from the result
set. If you use the all option, all rows are included in the results;
duplicates are not removed. Notice also that the columns in the result
set have the same names as the columns in T1. Any number of union
operators may appear in a Transact-SQL statement. For example:

x union y union z

By default, Adaptive Server evaluates a statement containing union
operators from left to right. Parentheses may be used to specify the
order of evaluation.

For example, the following two expressions are not equivalent:

x union all ( y union z)

( x union all y) union z

In the first expression, duplicates are eliminated in the union
between y and z. Then, in the union between that set and x,
duplicates are not eliminated. In the second expression, duplicates
are included in the union between x and y, but are then eliminated in
the subsequent union with z; all does not affect the final result of this
statement.

Guidelines for union Queries

The following are guidelines to observe when you use union
statements:

• All select lists in the union statement must have the same number
of expressions (such as column names, arithmetic expressions,
and aggregate functions). The following statement is invalid
because the first select list is longer than the second:

select stor_id, city, state from stores
union
select stor_id, city from stores_east

• Corresponding columns in all tables, or any subset of columns
used in the individual queries, must be of the same datatype, or
an implicit data conversion must be possible between the two
datatypes, or an explicit conversion should be supplied. For
example, a union is not possible between a column of the char
datatype and one of the int datatype, unless an explicit
conversion is supplied. However, a union is possible between a
column of the money datatype and one of the int datatype. See
union and “Datatype Conversion Functions” in the Adaptive Server



3-40 Summarizing, Grouping, and Sorting Query Results

Combining Queries: The union Operator Adaptive Server Enterprise Release 11.5.x

Reference Manual for more information about comparing
datatypes in a union statement.

• You must place corresponding columns in the individual queries
of a union statement in the same order, because union compares the
columns one to one in the order given in the individual queries.
For example, suppose you have the following tables:

The following query:

select a, b from T3
union
select b, a from T4

produces this result set:

a          b
---------  ---
        1  abc
        2  def
        3  ghi

(3 rows affected)

The following query results in an error message, because the
datatypes of corresponding columns are not compatible:

select a, b from T3
union
select a, b from T4

When you combine different (but compatible) datatypes such as
float and int in a union statement, Adaptive Server converts them
to the datatype with the most precision.

• Adaptive Server takes the column names in the table resulting
from a union from the first individual query in the union statement.
Therefore, if you want to define a new column heading for the
result set, do so in the first query. In addition, if you want to refer
to a column in the result set by a new name, for example in an

Table T4

a b

char(4) int

abc 1

def 2

ghi 3

Table T3

a b c

int char(4) char(4)

1 abc jkl

2 def mno

3 ghi pqr



Transact-SQL User’s Guide 3-41

Adaptive Server Enterprise Release 11.5.x Combining Queries: The union Operator

order by statement, refer to it in that way in the first select
statement.

The following query is correct:

select Cities = city from stores
union
select city from authors
order by Cities

Using union with Other Transact-SQL Commands

Following are some guidelines to follow when you use union
statements with other Transact-SQL commands:

• The first query in the union statement may contain an into clause
that creates a table to hold the final result set. For example, the
following statement creates a table called results that contains the
union of tables publishers, stores, and salesdetail:

select pub_id, pub_name, city into results
from publishers
union
select stor_id, stor_name, city from stores
union
select stor_id, title_id, ord_num from salesdetail

The into clause can be used only in the first query; if it appears
anywhere else, you get an error message.

• You can use order by and compute clauses only at the end of the union
statement to define the order of the final results or to compute
summary values. You cannot use them within the individual
queries that make up the union statement.

• You can use group by and having clauses within individual queries
only; you cannot use them to affect the final result set.

• You can also use the union operator within an insert statement. For
example:

insert into tour
    select city, state from stores
    union
    select city, state from authors

• You cannot use the union operator within a create view statement.

• You cannot use the union operator on text and image columns.

• You cannot use the for browse clause in statements involving the
union operator.



3-42 Summarizing, Grouping, and Sorting Query Results

Combining Queries: The union Operator Adaptive Server Enterprise Release 11.5.x



Transact-SQL User’s Guide 4-1

4 Joins: Retrieving Data from Several
Tables 4.

A join operation compares two or more tables (or views) by
specifying a column from each, comparing the values in those
columns row by row, and linking the rows that have matching values.
It then displays the results in a new table. The tables specified in the
join can be in the same database or in different databases.

This chapter discusses:

• How Joins Work   4-1

• How Joins Are Structured   4-3

• How Joins Are Processed   4-7

• Equijoins and Natural Joins   4-8

• Joins with Additional Conditions   4-9

• Joins Not Based on Equality   4-10

• Self-Joins and Correlation Names   4-11

• The Not-Equal Join   4-13

• Joining More Than Two Tables   4-16

• Outer Joins   4-17

• How Null Values Affect Joins   4-22

• Determining Which Table Columns to Join   4-23

You can state many joins as subqueries, which also involve two or
more tables. See Chapter 5, “Subqueries: Using Queries Within Other
Queries.”

When Component Integration Services is enabled, you can perform
joins across remote servers. For more information, see the Component
Integration Services User’s Guide.

How Joins Work

When you join two or more tables, the columns being compared
must have similar values—that is, values using the same or similar
datatypes.

There are several types of joins, such as equijoins, natural joins, and
outer joins. The most common join, the equijoin, is based on equality.



4-2 Joins: Retrieving Data from Several Tables

How Joins Work Adaptive Server Enterprise Release 11.5.x

The following join finds the names of authors and publishers located
in the same city:

select au_fname, au_lname, pub_name
from authors, publishers
where authors.city = publishers.city

au_fname      au_lname      pub_name
--------      --------      --------------------
Cheryl        Carson        Algodata Infosystems
Abraham       Bennet        Algodata Infosystems

(2 rows affected)

Because the query draws on information contained in two separate
tables, publishers and authors, you need a join to retrieve the
requested information. The statement:

where authors.city = publishers.city

joins the publishers and authors tables using the city column as the
link.

Join Syntax

You can embed a join in a select, update, insert, delete, or subquery. Other
search conditions and clauses may follow the join conditions. Joins use
the following syntax:

start of select, update, insert, delete, or subquery
from { table_list  | view_list }
where [not]
    [ table_name . | view_name .] column_name

join_operator
    [ table_name . | view_name .] column_name
[{and | or} [not]
    [ table_name .| view_name .] column_name

join_operator
    [ table_nam e.| view_name .] column_name ]...

End of select, update, insert, delete, or subquery

Joins and the Relational Model

The join operation is the hallmark of the relational model of database
management. More than any other feature, the join distinguishes
relational database management systems from other types of
database management systems.



Transact-SQL User’s Guide 4-3

Adaptive Server Enterprise Release 11.5.x How Joins Are Structured

In structured database management systems, often known as
network and hierarchical systems, relationships between data values
are predefined. Once a database has been set up, it is difficult to make
queries about unanticipated relationships among the data.

In a relational database management system, on the other hand,
relationships among data values are left unstated in the definition of
a database. They become explicit when the data is manipulated—
when you query the database, not when you create it. You can ask
any question that comes to mind about the data stored in the
database, regardless of what was intended when the database was
set up.

According to the rules of good database design, called
normalization rules, each table should describe one kind of entity—
a person, place, event, or thing. That is why, when you want to
compare information about two or more kinds of entities, you need
the join operation. Relationships among data stored in different
tables are discovered by joining them.

A corollary of this rule is that the join operation gives you unlimited
flexibility in adding new kinds of data to your database. You can
always create a new table that contains data about a different kind of
entity. If the new table has a field with values similar to those in some
field of an existing table or tables, it can be linked to those other
tables by joining.

How Joins Are Structured

A join statement, like a select statement, starts with the keyword
select. The columns named after the select keyword are the columns to
be included in the query results, in their desired order. The previous
example specified the columns that contained the authors’ names
from the authors table, and publishers’ names from the publishers
tables:

select au_fname, au_lname, pub_name
from authors, publishers

You do not have to qualify the columns au_fname, au_lname, and
pub_name by a table name because there is no ambiguity about the
table to which they belong. But the city column used for the join
comparison does need to be qualified, because there are columns of
that name in both the authors and publishers tables:

where authors.city = publishers.city



4-4 Joins: Retrieving Data from Several Tables

How Joins Are Structured Adaptive Server Enterprise Release 11.5.x

Though neither of the city columns is printed in the results, Adaptive
Server needs the table name to perform the comparison.

To specify that all the columns of the tables involved in the query be
included in the results, use an asterisk (*) with select. For example, to
include all the columns in authors and publishers in the preceding join
query, the statement is:

select *
from authors, publishers
where authors.city = publishers.city

au_id       au_lname au_fname phone        address
city       state postalcode contract pub_id pub_name
city       state
----------- -------- -------- ------------ ---------------------
---------- ----- ---------- -------- ------ --------------------
---------- -----
238-95-7766 Carson   Cheryl   415 548-7723 589 Darwin Ln.
Berkeley   CA    94705      1        1389   Algodata Infosystems
Berkeley   CA
409-56-7008 Bennet   Abraham  415 658-9932 223 Bateman St
Berkeley   CA    94705      1        1389   Algodata Infosystems
Berkeley   CA

(2 rows affected)

The display shows a total of 2 rows with 13 columns each. Because of
the length of the rows, each takes up multiple horizontal lines in this
display. Whenever “*” is used, the columns in the results are
displayed in their order in the create statement for the table.

The select list and the results of a join need not include columns from
both of the tables being joined. For example, to find the names of the
authors that live in the same city as one of the publishers, your query
need not include any columns from publishers:

select au_lname, au_fname
from authors, publishers
where authors.city = publishers.city

Remember, just as in any select statement, column names in the select
list and table names in the from clause must be separated by commas.

The from Clause

Use the from clause to specify which tables and views to join. This is
the clause that indicates to Adaptive Server that a join is desired. You



Transact-SQL User’s Guide 4-5

Adaptive Server Enterprise Release 11.5.x How Joins Are Structured

can list the tables or views in any order. The order of tables affects the
results displayed only when you use select * to specify the select list.

More than two tables or views can be named in the from clause. At
most, a query can reference 16 tables. This maximum includes:

• Base tables or views listed in the from clause

• Each instance of multiple references to the same table (self-joins)

• Tables referenced in subqueries

• Base tables referenced by the views listed in the from clause

• Tables being created with into

• Work tables created as a result of the query

If the join is part of an update or delete statement, the query can only
refer to 15 tables.

The following example joins columns from the titles and publishers
tables, doubling the price of all books published in California:

update titles
  set price = price * 2
  from titles, publishers
  where titles.pub_id = publishers.pub_id
  and publishers.state = "CA"

See “Joining More Than Two Tables” on page 4-16 for information on
joins involving more than two tables or views.

As explained in Chapter 2, “Queries: Selecting Data from a Table,”
table or view names can be qualified by the names of the owner and
database, and can be given correlation names for convenience, for
example:

select au_lname, au_fname
from pubs2.ignatz.authors, pubs2.ignatz.publishers
where authors.city = publishers.city

You can join views in exactly the same way as tables and use views
wherever tables are used. Chapter 9 discusses views; this chapter
uses only tables in its examples.

The where Clause

Use the where clause to determine which rows are included in the
results. where specifies the connection between the tables and views
named in the from clause. Be sure to qualify column names if there is



4-6 Joins: Retrieving Data from Several Tables

How Joins Are Structured Adaptive Server Enterprise Release 11.5.x

ambiguity about the table or view to which they belong. For
example:

where authors.city = publishers.city

This where clause gives the names of the columns to be joined,
qualified by table names if necessary, and the join operator—often
equality, sometimes “greater than” or “less than.” For details of where
clause syntax, see Chapter 2.

➤ Note
You will get unexpected results if you leave off the where clause of a join.

Without a where clause, any of the join queries discussed so far will produce

69 rows instead of 2. The section “How Joins Are Processed” on page 4-7

explains why that happens.

The where clause of a join statement can include other conditions in
addition to the one that links columns from different tables. In other
words, you can include a join operation and a select operation in the
same SQL statement. See “Joins with Additional Conditions” on
page 4-9 for an example.

Join Operators

Joins that match columns on the basis of equality are called
equijoins. A more precise definition of an equijoin is given under
“Equijoins and Natural Joins” on page 4-8, along with examples of
joins not based on equality.

Equijoins use the following comparison operators:

Joins that use the relational operators are collectively called theta
joins. Another set of join operators is used for outer joins, also

Table 4-1: Join operators

Operator Meaning
= Equal to
> Greater than
>= Greater than or equal to
< Less than
<= Less than or equal to
!= Not equal to
!> Less than or equal to
!< Greater than or equal to



Transact-SQL User’s Guide 4-7

Adaptive Server Enterprise Release 11.5.x How Joins Are Processed

discussed in detail later in this chapter. The outer join operators are
Transact-SQL extensions, as shown in Table 4-2:

Datatypes in Join Columns

The columns being joined must have the same or compatible
datatypes. Use the convert function when comparing columns whose
datatypes cannot be implicitly converted. Columns being joined
need not have the same name, although they often do.

If the datatypes used in the join are compatible, Adaptive Server
automatically converts them. For example, Adaptive Server converts
among any of the numeric type columns—int, smallint, tinyint,
decimal, or float, and among any of the character type and date
columns—char, varchar, nchar, nvarchar, and datetime. For details on
datatype conversion, see Chapter 10, “Using the Built-In Functions
in Queries,” and the “Datatype Conversion Functions” section of the
Adaptive Server Reference Manual.

Joins and text and image Columns

You cannot use joins for columns containing text or image values. You
can, however, compare the lengths of text columns from two tables
with a where clause. For example:

where datalength(textab_1.textcol) >
datalength(textab_2.textcol)

How Joins Are Processed

Knowing how joins are processed helps to understand them—and to
figure out why, when you incorrectly state a join, you sometimes get
unexpected results. This section describes the processing of joins in
conceptual terms. Adaptive Server’s actual procedure is more
sophisticated.

Table 4-2: Outer join operators

Operator Action

*= Include in the results all the rows from the first table, not just
the ones where the joined columns match.

=* Include in the results all the rows from the second table, not just
the ones where the joined columns match.



4-8 Joins: Retrieving Data from Several Tables

Equijoins and Natural Joins Adaptive Server Enterprise Release 11.5.x

Conceptually speaking, the first step in processing a join is to form
the Cartesian product of the tables—all the possible combinations of
the rows from each of the tables. The number of rows in a Cartesian
product of two tables is equal to the number of rows in the first table
times the number of rows in the second table.

The Cartesian product of the authors table and the publishers table is
69 (23 authors multiplied by 3 publishers). You can have a look at a
Cartesian product with any query that includes columns from more
than one table in the select list, more than one table in the from clause,
and no where clause. For example, if you leave the where clause off the
join used in previous examples, Adaptive Server combines each of
the 23 authors with each of the 3 publishers, and returns all 69 rows.

This Cartesian product does not contain any particularly useful
information. In fact, it is downright misleading, because it implies
that every author in the database has a relationship with every
publisher in the database—which is not true at all.

That is why you must include a where clause in the join, which
specifies the columns to be matched and the basis on which to match
them. It may also include other restrictions. Once Adaptive Server
forms the Cartesian product, it eliminates the rows that do not satisfy
the join by using the conditions in the where clause.

For example, the where clause in the previous example eliminates
from the results all rows in which the author’s city is not the same as
the publisher’s city:

where authors.city = publishers.city

Equijoins and Natural Joins

Joins based on equality (=) are called equijoins. Equijoins compare
the values in the columns being joined for equality and then include
all the columns in the tables being joined in the results.

This earlier query is an example of an equijoin:

select *
from authors, publishers
where authors.city = publishers.city

In the results of that statement, the city column appears twice. By
definition, the results of an equijoin contain two identical columns.
Because there is usually no point in repeating the same information,
one of these columns can be eliminated by restating the query. The
result is called a natural join.



Transact-SQL User’s Guide 4-9

Adaptive Server Enterprise Release 11.5.x Joins with Additional Conditions

The query that results in the natural join of publishers and authors on
the city column is:

select publishers.pub_id, publishers.pub_name,
  publishers.state, authors.*
from publishers, authors
where publishers.city = authors.city

The column publishers.city does not appear in the results.

Another example of a natural join is:

select au_fname, au_lname, pub_name
from authors, publishers
where authors.city = publishers.city

You can use more than one join operator to join more than two tables
or to join more than two pairs of columns. These “join expressions”
are usually connected with and, although or is also legal.

Following are two examples of joins connected by and. The first lists
information about books (type of book, author, and title), ordered by
book type. Books with more than one author have multiple listings,
one for each author.

select type, au_lname, au_fname, title
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id
order by type

The second finds the names of authors and publishers that are
located in the same city and state:

select au_fname, au_lname, pub_name
from authors, publishers
where authors.city = publishers.city
and authors.state = publishers.state

Joins with Additional Conditions

The where clause of a join query can include selection criteria as well
as the join condition. For example, to retrieve the names and
publishers of all the books for which advances of more than $7500
were paid, the statement is:

select title, pub_name, advance
from titles, publishers
where titles.pub_id = publishers.pub_id
and advance > $7500



4-10 Joins: Retrieving Data from Several Tables

Joins Not Based on Equality Adaptive Server Enterprise Release 11.5.x

title                            pub_name              advance
-----------------------------    --------------------  ---------
You Can Combat Computer Stress!  New Age Books        10,125.00
The Gourmet Microwave            Binnet & Hardley     15,000.00
Secrets of Silicon Valley        Algodata Infosystems  8,000.00
Sushi, Anyone?                   Binnet & Hardley      8,000.00

(4 rows affected)

The columns being joined (pub_id from titles and publishers) do not
need to appear in the select list and, therefore, do not show up in the
results.

You can include as many selection criteria as you want in a join
statement. The order of the selection criteria and the join condition is
not important.

Joins Not Based on Equality

The condition for joining the values in two columns does not need to
be equality. You can use any of the other comparison operators: not
equal (!=), greater than (>), less than (<), greater than or equal to (>=),
and less than or equal to (<=). Transact-SQL also provides the
operators !> and !<, which are equivalent to <= and >=, respectively.

This example of a greater-than join finds New Age authors who live
in states that come after New Age Books’ state, Massachusetts, in
alphabetical order.

select pub_name, publishers.state,
   au_lname, au_fname, authors.state
from publishers, authors
where authors.state > publishers.state
and pub_name = "New Age Books"

pub_name         state   au_lname       au_fname         state
-------------    ------  -------------- -----------      -----
New Age Books    MA      Greene         Morningstar      TN
New Age Books    MA      Blotchet-Halls Reginald         OR
New Age Books    MA      del Castillo   Innes            MI
New Age Books    MA      Panteley       Sylvia           MD
New Age Books    MA      Ringer         Anne             UT
New Age Books    MA      Ringer         Albert           UT

(6 rows affected)

The following example uses a >= join and a < join to look up the
correct royalty from the roysched table, based on the book’s total sales.



Transact-SQL User’s Guide 4-11

Adaptive Server Enterprise Release 11.5.x Self-Joins and Correlation Names

select t.title_id, t.total_sales, r.royalty
from titles t, roysched r
where t.title_id = r.title_id
and t.total_sales >= r.lorange
and t.total_sales < r.hirange

title_id       total_sales      royalty
--------       -----------      -------
BU1032               4095           10
BU1111               3876           10
BU2075               1872           24
BU7832               4095           10
MC2222               2032           12
MC3021              22246           24
PC1035               8780           16
PC8888               4095           10
PS1372                375           10
PS2091               2045           12
PS2106                111           10
PS3333               4072           10
PS7777               3336           10
TC3218                375           10
TC4203              15096           14
TC7777               4095           10

(16 rows affected)

Self-Joins and Correlation Names

Joins that compare values within the same column of one table are
called self-joins. To distinguish the two roles in which the table
appears, use aliases, or correlation names.

For example, you can use a self-join to find out which authors in
Oakland, California, live in the same postal code area. Since this
query involves a join of the authors table with itself, the authors table
appears in two roles. To distinguish these roles, you can temporarily
and arbitrarily give the authors table two different correlation
names—such as au1 and au2—in the from clause. These correlation
names qualify the column names in the rest of the query. The self-join
statement looks like this:

select au1.au_fname, au1.au_lname,
au2.au_fname, au2.au_lname
from authors au1, authors au2
where au1.city = "Oakland" and au2.city = "Oakland"
and au1.state = "CA" and au2.state = "CA"
and au1.postalcode = au2.postalcode



4-12 Joins: Retrieving Data from Several Tables

Self-Joins and Correlation Names Adaptive Server Enterprise Release 11.5.x

au_fname     au_lname    au_fname    au_lname
---------    ----------- --------    --------
Marjorie     Green       Marjorie    Green
Dick         Straight    Dick        Straight
Dick         Straight    Dirk        Stringer
Dick         Straight    Livia       Karsen
Dirk         Stringer    Dick        Straight
Dirk         Stringer    Dirk        Stringer
Dirk         Stringer    Livia       Karsen
Stearns      MacFeather  Stearns     MacFeather
Livia        Karsen      Dick        Straight
Livia        Karsen      Dirk        Stringer
Livia        Karsen      Livia       Karsen

(11 rows affected)

Be sure to list the aliases in the from clause in the same order as you
refer to them in the select list, as in this example. Depending on the
query, the results may be ambiguous if you list them in a different
order.

To eliminate the rows in the results where the authors match
themselves, and are identical except that the order of the authors is
reversed, you can make this addition to the self-join query:

select au1.au_fname, au1.au_lname,
au2.au_fname, au2.au_lname
from authors au1, authors au2
where au1.city = "Oakland" and au2.city = "Oakland"
and au1.state = "CA" and au2.state = "CA"
and au1.postalcode = au2.postalcode
and au1.au_id < au2.au_id

au_fname    au_lname     au_fname    au_lname
---------   -----------  ---------   ---------
Dick        Straight     Dirk        Stringer
Dick        Straight     Livia       Karsen
Dirk        Stringer     Livia       Karsen

(3 rows affected)

It is now clear that Dick Straight, Dirk Stringer, and Livia Karsen all
have the same postal code.



Transact-SQL User’s Guide 4-13

Adaptive Server Enterprise Release 11.5.x The Not-Equal Join

The Not-Equal Join

The not-equal join is particularly useful in restricting the rows
returned by a self-join. In the following example, a not-equal join and
a self-join find the categories in which there are two or more
inexpensive (less than $15) books of different prices:

select distinct t1.type, t1.price
from titles t1, titles t2
where t1.price < $15
and t2.price < $15
and t1.type = t2.type
and t1.price != t2.price

type        price
----------  -----
business     2.99
business    11.95
psychology   7.00
psychology   7.99
psychology  10.95
trad_cook   11.95
trad_cook   14.99

(7 rows affected)

The expression “not column_name = column_name” is equivalent to
“column_name != column_name.”

The following example uses a not-equal join, combined with a self-
join. It finds all the rows in the titleauthor table where there are two or
more rows with the same title_id, but different au_id numbers that is,
books which have more than one author.

select distinct t1.au_id, t1.title_id
from titleauthor t1, titleauthor t2
where t1.title_id = t2.title_id
and t1.au_id != t2.au_id
order by t1.title_id



4-14 Joins: Retrieving Data from Several Tables

The Not-Equal Join Adaptive Server Enterprise Release 11.5.x

au_id            title_id
-----------      --------
213-46-8915      BU1032
409-56-7008      BU1032
267-41-2394      BU1111
724-80-9391      BU1111
722-51-5454      MC3021
899-46-2035      MC3021
427-17-2319      PC8888
846-92-7186      PC8888
724-80-9391      PS1372
756-30-7391      PS1372
899-46-2035      PS2091
998-72-3567      PS2091
267-41-2394      TC7777
472-27-2349      TC7777
672-71-3249      TC7777

(15 rows affected)

For each book in titles, the following example finds all other books of
the same type that have a different price:

select t1.type, t1.title_id, t1.price,
t2.title_id, t2.price
from titles t1, titles t2
where t1.type = t2.type
and t1.price != t2.price

Be careful when interpreting the results of a not-equal join. For
example, it would be easy to think you could use a not-equal join to
find the authors who live in a city where no publisher is located:

select distinct au_lname, authors.city
from publishers, authors
where publishers.city != authors.city

However, this query finds the authors who live in a city where no
publishers are located, which is all of them. The correct SQL
statement is a subquery:

select distinct au_lname, authors.city
from publishers, authors
where authors.city not in
(select city from publishers
 where authors.city = publishers.city)



Transact-SQL User’s Guide 4-15

Adaptive Server Enterprise Release 11.5.x The Not-Equal Join

Not-Equal Joins and Subqueries

Sometimes a not-equal join query is not sufficiently restrictive and
needs to be replaced by a subquery. For example, suppose you want
to list the names of authors who live in a city where no publisher is
located. For the sake of clarity, let us also restrict this query to authors
whose last names begin with “A”, “B”, or “C”. A not-equal join
query might be:

select distinct au_lname, authors.city
from publishers, authors
where au_lname like "[ABC]%"
and publishers.city != authors.city

But here are the results—not an answer to the question that was
asked!

au_lname             city
----------------     ------------
Bennet               Berkeley
Carson               Berkeley
Blotchet-Halls       Corvallis

(3 rows affected)

The system interprets this version of the SQL statement to mean:
“find the names of authors who live in a city where some publisher
is not located.” All the excluded authors qualify, including the
authors who live in Berkeley, home of the publisher Algodata
Infosystems.

In this case, the way that the system handles joins (first finding every
eligible combination before evaluating other conditions) causes this
query to return undesirable results. You must use a subquery to get
the results you want. A subquery can eliminate the ineligible rows
first and then perform the remaining restrictions.

Here is the correct statement:

select distinct au_lname, city
from authors
where au_lname like "[ABC]%"
and city not in
(select city from publishers
where authors.city = publishers.city)



4-16 Joins: Retrieving Data from Several Tables

Joining More Than Two Tables Adaptive Server Enterprise Release 11.5.x

Now, the results are what you want:

au_lname             city
-------------        ------------
Blotchet-Halls       Corvallis

(1 row affected)

Subqueries are covered in greater detail in Chapter 5, “Subqueries:
Using Queries Within Other Queries.”

Joining More Than Two Tables

The titleauthor table of pubs2 offers a good example of a situation in
which joining more than two tables is helpful. To find the titles of all
the books of a particular type and the names of their authors, the
query is:

select au_lname, au_fname, title
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id
and titles.type = "trad_cook"

au_lname       au_fname     title
-------------- -----------  ------------------------
Panteley       Sylvia       Onions, Leeks, and Garlic: Cooking
                            Secrets of the Mediterranean
Blotchet-Halls Reginald     Fifty Years in Buckingham Palace
                            Kitchens
O’Leary        Michael      Sushi, Anyone?
Gringlesby     Burt         Sushi, Anyone?
Yokomoto       Akiko        Sushi, Anyone?

      (5 rows affected)

Notice that one of the tables in the from clause, titleauthor, does not
contribute any columns to the results. Nor do any of the columns that
are joined—au_id and title_id—appear in the results. Nonetheless,
this join is possible only by using titleauthor as an intermediate table.

You can also join more than two pairs of columns in the same
statement. For example, here is a query that shows the title_id, its
total sales and the range in which they fall, and the resulting royalty:



Transact-SQL User’s Guide 4-17

Adaptive Server Enterprise Release 11.5.x Outer Joins

select titles.title_id, total_sales, lorange,
hirange, royalty
from titles, roysched
where titles.title_id = roysched.title_id
and total_sales >= lorange
and total_sales < hirange

title_id    total_sales   lorange hirange  royalty
--------    -----------   ------- -------  -------
 BU1032            4095         0    5000      10
 BU1111            3876         0    4000      10
 BU2075           18722     14001   50000      24
 BU7832            4095         0    5000      10
 MC2222            2032      2001    4000      12
 MC3021            2224     12001   50000      24
 PC1035            8780      4001   10000      16
 PC8888            4095         0    5000      10
 PS1372             375         0   10000      10
 PS2091            2045      1001    5000      12
 PS2106             111         0    2000      10
 PS3333            4072         0    5000      10
 PS7777            3336         0    5000      10
 TC3218             375         0    2000      10
 TC4203           15096      8001   16000      14
 TC7777            4095         0    5000      10

(16 rows affected)

When there is more than one join operator in the same statement,
either to join more than two tables or to join more than two pairs of
columns, the “join expressions” are almost always connected with
and, as in the earlier examples. However, it is also legal to connect
them with or.

Outer Joins

Joins that include all rows, regardless of whether there is a matching
row, are called outer joins. Adaptive Server supports both left and
right outer joins.

The left outer join, *=, selects all rows from the first table that meet
the statement’s restrictions. The second table generates values if
there is a match on the join condition. Otherwise, the second table
generates null values.



4-18 Joins: Retrieving Data from Several Tables

Outer Joins Adaptive Server Enterprise Release 11.5.x

For example, the following left outer join lists all authors and finds
the publishers (if any) in their city:

select au_fname, au_lname, pub_name
from authors, publishers
where authors.city *= publishers.city

The right outer join, =*, selects all rows from the second table that
meet the statement’s restrictions. The first table generates values if
there is a match on the join condition. Otherwise, the first table
generates null values.

A table is either an inner or an outer member of an outer join. If the
join operator is *=, the second table is the inner table; if the join
operator is =*, the first table is the inner table. You can compare a
column from the inner table to a constant as well as using it in the
outer join. For example, if you want to find out which title has sold
more than 4000 copies:

select qty, title from salesdetail, titles
where qty > 4000
and titles.title_id *= salesdetail.title_id

However, the inner table in an outer join cannot also participate in a
regular join clause.

An earlier example used a join to find the names of authors who live
in the same city as a publisher returns two names: Abraham Bennet
and Cheryl Carson. To include all the authors in the results,
regardless of whether a publisher is located in the same city, use an
outer join. Here is what the query and the results of the outer join
look like:

select au_fname, au_lname, pub_name
from authors, publishers
where authors.city *= publishers.city

au_fname     au_lname         pub_name
---------    --------------   ---------------
Johnson      White            NULL
Marjorie     Green            NULL
Cheryl       Carson           Algodata Infosystems
Michael      O’Leary          NULL
Dick         Straight         NULL
Meander      Smith            NULL
Abraham      Bennet           Algodata Infosystems
Ann          Dull             NULL
Burt         Gringlesby       NULL
Chastity     Locksley         NULL
Morningstar  Greene           NULL
Reginald     Blotche-Halls    NULL



Transact-SQL User’s Guide 4-19

Adaptive Server Enterprise Release 11.5.x Outer Joins

Akiko        Yokomoto         NULL
Innes        del Castillo     NULL
Michel       DeFrance         NULL
Dirk         Stringer         NULL
Stearns      MacFeather       NULL
Livia        Karsen           NULL
Sylvia       Panteley         NULL
Sheryl       Hunter           NULL
Heather      McBadden         NULL
Anne         Ringer           NULL
Albert       Ringer           NULL

(23 rows affected)

The comparison operator *= distinguishes the outer join from an
ordinary join. This “left” outer join tells Adaptive Server to include
all the rows in the authors table in the results, whether or not there is
a match on the city column in the publishers table. Notice that in the
results, there is no matching data for most of the authors listed, so
these rows contain NULL in the pub_name column.

➤ Note
Since bit columns do not permit null values, a value of 0 appears in an outer

join when there is no match for a bit column that is in the inner table.

The “right” outer join is specified with the comparison operator =*,
which indicates that all the rows in the second table are to be
included in the results, regardless of whether there is matching data
in the first table.

Substituting this operator in the outer join query shown earlier gives
this result:

select au_fname, au_lname, pub_name
from authors, publishers
where authors.city =* publishers.city

au_fname     au_lname    pub_name
---------    ---------   ---------------
NULL         NULL        New Age Books
NULL         NULL        Binnet & Hardley
Cheryl       Carson      Algodata Infosystems
Abraham      Bennet      Algodata Infosystems

(4 rows affected)

You can further restrict an outer join by comparing it to a constant.
This means that you can zoom in on precisely the values you really



4-20 Joins: Retrieving Data from Several Tables

Outer Joins Adaptive Server Enterprise Release 11.5.x

want to see and use the outer join to list the rows that did not make
the cut. Let us look at the equijoin first and compare it to the outer
join. For example, to find out which titles had a sale of more than 500
copies from any store, use this query:

select distinct salesdetail.stor_id, title
from titles, salesdetail
where qty > 500
and salesdetail.title_id = titles.title_id

stor_id title
------- --------------------------------------------
5023    Sushi, Anyone?
5023    Is Anger the Enemy?
5023    The Gourmet Microwave
5023    But Is It User Friendly?
5023    Secrets of Silicon Valley
5023    Straight Talk About Computers
5023    You Can Combat Computer Stress!
5023    Silicon Valley Gastronomic Treats
5023    Emotional Security: A New Algorithm
5023    The Busy Executive's Database Guide
5023    Fifty Years in Buckingham Palace Kitchens
5023    Prolonged Data Deprivation: Four Case Studies
5023    Cooking with Computers: Surreptitious Balance Sheets
7067    Fifty Years in Buckingham Palace Kitchens

(14 rows affected)

Also, to show the titles that did not have a sale of more than 500
copies in any store, you can use an outer join query:

select distinct salesdetail.stor_id, title
from titles, salesdetail
where qty > 500
and salesdetail.title_id =* titles.title_id

stor_id     title
-------   -------------------------------------------
NULL    Net Etiquette
NULL    Life Without Fear
5023    Sushi, Anyone?
5023    Is Anger the Enemy?
5023    The Gourmet Microwave
5023    But Is It User Friendly?
5023    Secrets of Silicon Valley
5023    Straight Talk About Computers
NULL    The Psychology of Computer Cooking
5023    You Can Combat Computer Stress!
5023    Silicon Valley Gastronomic Treats



Transact-SQL User’s Guide 4-21

Adaptive Server Enterprise Release 11.5.x Outer Joins

5023    Emotional Security: A New Algorithm
5023    The Busy Executive's Database Guide
5023    Fifty Years in Buckingham Palace Kitchens
7067    Fifty Years in Buckingham Palace Kitchens
5023    Prolonged Data Deprivation: Four Case Studies
5023    Cooking with Computers: Surreptitious Balance Sheets
NULL    Computer Phobic and Non-Phobic Individuals:
        Behavior Variations
NULL    Onions, Leeks, and Garlic: Cooking Secrets of the
        Mediterranean

 (19 rows affected)

You can restrict an inner table with a simple clause. The following
example lists the authors who live in the same city as a publisher, but
excludes the author Cheryl Carson, who would normally be listed as
an author living in a publisher’s city:

select au_fname, au_lname, pub_name
from authors, publishers
where authors.city =* publishers.city
and authors.au_lname != "Carson"

au_fname     au_lname    pub_name
---------    ---------   ---------------
NULL         NULL        New Age Books
NULL         NULL        Binnet & Hardley
Abraham      Bennet      Algodata Infosystems

(3 rows affected)

Outer Join Restrictions

In Transact-SQL, a table cannot participate in both an outer join
clause and a regular join clause. The following query fails because
the salesdetail table is asked to do double duty:

select distinct sales.stor_id, stor_name, title
from sales, stores, titles, salesdetail
where qty > 500
and salesdetail.title_id =* titles.title_id
and sales.stor_id = salesdetail.stor_id
and sales.stor_id = stores.stor_id

Msg 303, Level 16, State 1:
Server ’FUSSY’, Line 1:
The table ’salesdetail’ is an inner member of an
outer-join clause. This is not allowed if the
table also participates in a regular join clause.



4-22 Joins: Retrieving Data from Several Tables

How Null Values Affect Joins Adaptive Server Enterprise Release 11.5.x

If you want to know the name of the store that sold more than 500
copies of a book, you would have to use a second query. If you
submit a query with an outer join and a qualification on a column
from the inner table of the outer join, the results may not be what you
expect. The qualification in the query does not restrict the number of
rows returned, but rather affects which rows contain the null value.
For rows that do not meet the qualification, a null value appears in
the inner table’s columns of those rows.

Views Used with Outer Joins

If you define a view with an outer join, and then query the view with
a qualification on a column from the inner table of the outer join, the
results may not be what you expect. The query returns all rows from
the inner table. Rows that do not meet the qualification show a NULL
value in the appropriate columns of those rows.

The following rules determine what types of updates you can make
to columns through join views:

• delete statements are not allowed on join views.

• insert statements are not allowed on join views created with check
option.

• update statements are allowed on join views with check option. The
update fails if any of the affected columns appears in the where
clause, in an expression that includes columns from more than
one table.

• If you insert or update a row through a join view, all affected
columns must belong to the same base table.

How Null Values Affect Joins

Null values in tables or views being joined will never match each
other. Since bit columns do not permit NULLs, a value of 0 appears in
an outer join when there is no match for a bit column that is in the
inner table.

The result of a join of NULL with any other value is NULL. Because
null values represent unknown or inapplicable values, Transact-SQL
has no reason to believe that one unknown value matches another.

You can detect the presence of null values in a column from one of
the tables being joined only by using an outer join. Here are two



Transact-SQL User’s Guide 4-23

Adaptive Server Enterprise Release 11.5.x Determining Which Table Columns to Join

tables, each of which has a NULL in the column that will participate
in the join. A left outer join displays the NULL in the first table.

Here is the left outer join:

select *
from t1, t2
where a *= c

 a            b       c            d
 -----------  ------  -----------  ------
           1  one            NULL  NULL
        NULL  three          NULL  NULL
           4  join4             4  four

(3 rows affected)

The results make it difficult to distinguish a NULL in the data from a
NULL that represents a failure to join. When null values are present
in data being joined, it is usually preferable to omit them from the
results by using a regular join.

Determining Which Table Columns to Join

The system procedure sp_helpjoins lists the columns in two tables or
views that are likely join candidates. Its syntax is:

sp_helpjoins table1 ,  table2

For example, here is how to use sp_helpjoins to find the likely join
columns between titleauthor and titles:

sp_helpjoins titleauthor, titles

first_pair
------------------------------ --------------------
title_id                      title_id

The column pairs that sp_helpjoins displays come from two sources.
First, sp_helpjoins checks the syskeys table in the current database to see
if any foreign keys have been defined on the two tables with
sp_foreignkey, and then checks to see if any common keys have been

Table t1

a b

1 one

NULL three

4 join4

Table t2

c d

NULL two

4 four



4-24 Joins: Retrieving Data from Several Tables

Determining Which Table Columns to Join Adaptive Server Enterprise Release 11.5.x

defined on the two tables with sp_commonkey. If it does not find any
common keys there, the procedure applies less restrictive criteria to
come up with any keys that may be reasonably joined. It checks for
keys with the same user datatypes, and if that fails, for columns with
the same name and datatype.

For complete information on the system procedures, see the Adaptive
Server Reference Manual.



Transact-SQL User’s Guide 5-1

5 Subqueries: Using Queries Within
Other Queries 5.

A subquery is a select statement that is nested inside another select,
insert, update, or delete statement, inside a conditional statement, or
inside another subquery.

This chapter discusses:

• How Subqueries Work   5-1

• Types of Subqueries   5-10

• Expression Subqueries   5-11

• Quantified Predicate Subqueries   5-14

• Using Correlated Subqueries   5-28

You can also express subqueries as join operations. See Chapter 4,
“Joins: Retrieving Data from Several Tables.”

How Subqueries Work

Subqueries, also called inner queries, appear within a where or having
clause of another SQL statement or in the select list of a statement.
You can use subqueries to handle query requests that are expressed
as the results of other queries. A statement that includes a subquery
operates on rows from one table, based on its evaluation of the
subquery’s select list, which can refer to the same table as the outer
query, or to a different table. In Transact-SQL, a subquery can also be
used almost anywhere an expression is allowed, if the subquery
returns a single value.  a case expression can also include a subquery.

For example, the following subquery lists the names of all authors
whose royalty split is more than $75:

select au_fname, au_lname
from authors
where au_id in
   (select au_id
    from titleauthor
    where royaltyper > 75)

select statements that contain one or more subqueries are sometimes
called nested queries or nested select statements. The practice of
nesting one select statement inside another is one reason for the word
“structured” in “Structured Query Language.”



5-2 Subqueries: Using Queries Within Other Queries

How Subqueries Work Adaptive Server Enterprise Release 11.5.x

You can formulate many SQL statements that include a subquery as
joins. Other questions can be posed only with subqueries. Some
people prefer subqueries to alternative formulations, because they
find subqueries easier to understand. Other SQL users avoid
subqueries whenever possible. You can choose whichever
formulation you prefer. (Adaptive Server converts some subqueries
into joins before processing them.)

The result of a subquery that returns no values is NULL. If a
subquery returns NULL, the query failed.

Subquery Syntax

Always enclose the select statement of a subquery in parentheses. The
subquery’s select statement has a select syntax that is somewhat
restricted, as shown by its syntax:

(select [all | distinct] subquery_select_list
[from [[ database .] owner .]{ table_name  | view_name }
 [({index index_name  | prefetch size  |[lru|mru]})]}
        [holdlock | noholdlock] [shared]
     [,[[ database .] owner .]{ table_name  | view_name }
 [({index index_name  | prefetch size  |[lru|mru]})]}
        [holdlock | noholdlock] [shared]]... ]
[where search_conditions ]
[group by aggregate_free_expression  [,

aggregate_free_expression ]... ]
[having search_conditions ])

Subquery Restrictions

A subquery is subject to the following restrictions:

• The subquery_select_list must consist of only one column name,
except in the exists subquery, in which case the asterisk (*) is
usually used in place of the single column name. Do not specify
more than one column name. Be sure to qualify column names
with table or view names if there is ambiguity about the table or
view to which they belong.

• Subqueries can be nested inside the where or having clause of an
outer select, insert, update, or delete statement, inside another
subquery, or in a select list. Alternatively, you can write many
statements that contain subqueries as joins; Adaptive Server
processes such statements as joins.



Transact-SQL User’s Guide 5-3

Adaptive Server Enterprise Release 11.5.x How Subqueries Work

• In Transact-SQL, a subquery can appear almost anywhere an
expression can be used, if it returns a single value.

• You cannot use subqueries in an order by, group by, or compute by list.

• You cannot include a for browse clause or a union in a subquery.

• The select list of an inner subquery introduced with a comparison
operator can include only one expression or column name, and
the subquery must return a single value. The column you name in
the where clause of the outer statement must be join-compatible
with the column you name in the subquery select list.

• text and image datatypes are not allowed in subqueries.

• Subqueries cannot manipulate their results internally, that is, a
subquery cannot include the order by clause, the compute clause, or
the into keyword.

• Correlated (repeating) subqueries are not allowed in the select
clause of an updatable cursor defined by declare cursor.

• There is a limit of 16 nesting levels.

• The maximum number of subqueries on each side of a union is
16.

• The where clause of a subquery can only contain an aggregate
function if the subquery is in a having clause of an outer query and
the aggregate value is a column from a table in the from clause of
the outer query.

• The sum of the maximum lengths of all the columns specified by
a subquery cannot exceed 256 bytes.

Example of Using a Subquery

Using a query to find the books that have the same price as Straight
Talk About Computers involves two steps. First, you find the price of
Straight Talk:

select price
from titles
where title = "Straight Talk About Computers"

price
-------------
       $19.99

(1 row affected)



5-4 Subqueries: Using Queries Within Other Queries

How Subqueries Work Adaptive Server Enterprise Release 11.5.x

Then you use the result in a second query to find all the books that
cost the same as Straight Talk:

select title, price
from titles
where price = $19.99

title                                         price
------------------------------------------    -----
The Busy Executive’s Database Guide           19.99
Straight Talk About Computers                 19.99
Silicon Valley Gastronomic Treats             19.99
Prolonged Data Deprivation: Four Case Studies 19.99

(4 rows affected)

A subquery solves the same problem in only one step, using the
statement:

select title, price
from titles
where price =
   (select price
    from titles
    where title = "Straight Talk About Computers")

title                                         price
---------------------------------------       -----
The Busy Executive’s Database Guide           19.99
Straight Talk About Computers                 19.99
Silicon Valley Gastronomic Treats             19.99
Prolonged Data Deprivation: Four Case Studies 19.99

(4 rows affected)

Qualifying Column Names

Column names in a statement are implicitly qualified by the table
referenced in the from clause at the same level. In the following
example, the table name publishers implicitly qualifies the pub_id
column in the where clause of the outer query publishers in the outer
query’s from clause. The reference to pub_id in the select list of the
subquery is qualified by the subquery’s from clause—that is, by the
titles table:



Transact-SQL User’s Guide 5-5

Adaptive Server Enterprise Release 11.5.x How Subqueries Work

select pub_name
from publishers
where pub_id in
   (select pub_id
    from titles
    where type = "business")

This is what the query looks like with the implicit assumptions
spelled out:

select pub_name
from publishers
where publishers.pub_id in
   (select titles.pub_id
    from titles
    where type = "business")

It is never wrong to state the table name explicitly, and it is always
possible to override implicit assumptions about table names with
explicit qualifications.

Subqueries with Correlation Names

As discussed in Chapter 4, “Joins: Retrieving Data from Several
Tables,” table correlation names are required in self-joins because the
table being joined to itself appears in two different roles. Correlation
names can also be used in nested queries that refer to the same table
in both an inner query and an outer query.

For example, you can find authors who live in the same city as Livia
Karsen by using the following subquery:

select au1.au_lname, au1.au_fname, au1.city
from authors au1
where au1.city in
   (select au2.city
    from authors au2
    where au2.au_fname = "Livia"
    and au2.au_lname = "Karsen")

au_lname     au_fname     city
-----------  ---------    -------
Green        Marjorie     Oakland
Straight     Dick         Oakland
Stringer     Dirk         Oakland
MacFeather   Stearns      Oakland
Karsen       Livia        Oakland

(5 rows affected)



5-6 Subqueries: Using Queries Within Other Queries

How Subqueries Work Adaptive Server Enterprise Release 11.5.x

Explicit correlation names make it clear that the reference to authors
in the subquery does not mean the same thing as the reference to
authors in the outer query.

Without explicit correlation, the subquery is:

select au_lname, au_fname, city
from authors
where city in
   (select city
    from authors
    where au_fname = "Livia"
    and au_lname = "Karsen")

The above query, and other statements in which the subquery and
the outer query refer to the same table, can be alternatively stated as
self-joins:

select au1.au_lname, au1.au_fname, au1.city
from authors au1, authors au2
where au1.city = au2.city
and au2.au_lname = "Karsen"
and au2.au_fname = "Livia"

A subquery restated as a join may not return the results in the same
order, and the join may require the distinct keyword to eliminate
duplicates.

Multiple Levels of Nesting

A subquery can include one or more subqueries. You can nest up to
16 subqueries in a statement.

An example of a problem that can be solved using a statement with
multiple levels of nested queries is: “Find the names of authors who
have participated in writing at least one popular computing book.”

select au_lname, au_fname
from authors
where au_id in
   (select au_id
    from titleauthor
    where title_id in
       (select title_id
        from titles
        where type = "popular_comp") )



Transact-SQL User’s Guide 5-7

Adaptive Server Enterprise Release 11.5.x How Subqueries Work

au_lname               au_fname
---------------------- ------------
Carson                 Cheryl
Dull                   Ann
Locksley               Chastity
Hunter                 Sheryl

(4 rows affected)

The outermost query selects the names of all authors. The next query
finds the authors’ IDs, and the innermost query returns the title ID
numbers PC1035, PC8888, and PC9999.

You can also express this query as a join:

select au_lname, au_fname
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id
and type = "popular_comp"

Subqueries in update, delete, and insert Statements

You can nest subqueries in update, delete, and insert statements as well
as in select statements.

➤ Note
Running these example queries will change the pubs2 database. Ask a

System Administrator for help in getting a clean copy of the sample

database.

The following query doubles the price of all books published by New
Age Books. The statement updates the titles table; its subquery
references the publishers table.

update titles
set price = price * 2
where pub_id in
   (select pub_id
    from publishers
    where pub_name = "New Age Books")



5-8 Subqueries: Using Queries Within Other Queries

How Subqueries Work Adaptive Server Enterprise Release 11.5.x

An equivalent update statement using a join is:

update titles
set price = price * 2
from titles, publishers
where titles.pub_id = publishers.pub_id
and pub_name = "New Age Books"

You can remove all records of sales of business books with this
nested select statement:

delete salesdetail
where title_id in
   (select title_id
    from titles
    where type = "business")

An equivalent delete statement using a join is:

delete salesdetail
from salesdetail, titles
where salesdetail.title_id = titles.title_id
and type = "business"

Subqueries in Conditional Statements

You can use subqueries in conditional statements. The preceding
subquery that removed all records of sales of business books could
be rewritten, as shown in the next example, to check for the records
before deleting them:

if exists (select title_id
    from titles
    where type = "business")
begin
    delete salesdetail
    where title_id in
      (select title_id
       from titles
       where type = "business")
end

Using Subqueries in Place of an Expression

In Transact-SQL, you can substitute a subquery almost anyplace
where you can use an expression in a select, update, insert, or delete
statement. For example, a subquery can compare with a column from
the inner table of an outer join.



Transact-SQL User’s Guide 5-9

Adaptive Server Enterprise Release 11.5.x How Subqueries Work

You cannot use a subquery in an order by list or as an expression in the
values list in an insert statement.

The following statement shows how to find the titles and types of
books that have been written by authors living in California and that
are also published there:

select title, type
from titles
where title in
   (select title
    from titles, titleauthor, authors
    where titles.title_id = titleauthor.title_id
    and titleauthor.au_id = authors.au_id
    and authors.state = "CA")
and title in
   (select title
    from titles, publishers
    where titles.pub_id = publishers.pub_id
    and publishers.state = "CA")

title                                 type
-----------------------------------   ----------
The Busy Executive’s Database Guide   business
Cooking with Computers:
     Surreptitious Balance Sheets     business
Straight Talk About Computers         business
But Is It User Friendly?              popular_comp
Secrets of Silicon Valley             popular_comp
Net Etiquette                         popular_comp

(6 rows affected)

The following statement selects the book titles that have had more
than 5000 copies sold, lists their prices, and the price of the most
expensive book:

select title, price,
    (select max(price) from titles)
    from titles
    where total_sales > 5000



5-10 Subqueries: Using Queries Within Other Queries

Types of Subqueries Adaptive Server Enterprise Release 11.5.x

title                                price
-----------------------------------  -----  ------
You Can Combat Computer Stress!       2.99   22.95
The Gourmet Microwave                 2.99   22.95
But Is It User Friendly?             22.95   22.95
Fifty Years in Buckingham Palace
    Kitchens                         11.95   22.95

(4 rows affected)

Types of Subqueries

There are two basic types of subqueries:

• Expression subqueries are introduced with an unmodified
comparison operator, must return a single value, and can be used
almost anywhere an expression is allowed in SQL.

• Quantified predicate subqueries operate on lists introduced
with in or with a comparison operator modified by any or all.
Quantified predicate subqueries return 0 or more values. This
type is also used as an existence test, introduced with exists.

Subqueries of either type are either noncorrelated or correlated
(repeating).

• A noncorrelated subquery can be evaluated as if it were an
independent query. Conceptually, the results of the subquery are
substituted in the main statement, or outer query. This is not how
Adaptive Server actually processes statements with subqueries.
Noncorrelated subqueries can be alternatively stated as joins and
are processed as joins by Adaptive Server.

• A correlated subquery cannot be evaluated as an independent
query, but it can reference columns in a table listed in the from list
of the outer query. Correlated subqueries are discussed in detail
at the end of this chapter.

The following sections discuss the different types of subqueries.



Transact-SQL User’s Guide 5-11

Adaptive Server Enterprise Release 11.5.x Expression Subqueries

Expression Subqueries

Expression subqueries include:

• Subqueries in a select list (introduced with in)

• Subqueries in a where or having clause connected by a comparison
operator (=, !=, >, >=, <, <=)

Expression subqueries take the general form:

[Start of select, insert, update, delete statement or subquery]

where expression comparison_operator  ( subquery )

[End of select, insert, update, delete statement or subquery]

An expression consists of a subquery or any combination of column
names, constants, and functions connected by arithmetic or bitwise
operators.

The comparison_operator is one of the following:

If you use a column name in the where or having clause of the outer
statement, make sure a column name in the subquery_select_list is join
compatible with it.

A subquery that is introduced with an unmodified comparison
operator (that is, a comparison operator that is not followed by any or
all) must resolve to a single value. If such a subquery returns more
than one value, Adaptive Server returns an error message.

Ideally, to use a subquery that is introduced by an unmodified
comparison operator, you must be familiar enough with your data
and with the nature of the problem to know that the subquery will
return one value.

For example, suppose that each publisher is located in only one city.
To find the names of authors who live in the city where Algodata

Operator Meaning
 = Equal to
 > Greater than
 < Less than
>= Greater than or equal to
<= Less than or equal to
!= Not equal to
 <> Not equal to
!> Not greater than
!< Not less than



5-12 Subqueries: Using Queries Within Other Queries

Expression Subqueries Adaptive Server Enterprise Release 11.5.x

Infosystems is located, write a statement with a subquery that is
introduced with the comparison operator =:

select au_lname, au_fname
from authors
where city =
   (select city
    from publishers
    where pub_name = "Algodata Infosystems")

au_lname       au_fname
-------------- --------------
Carson         Cheryl
Bennet         Abraham

(2 rows affected)

Using Scalar Aggregate Functions to Guarantee a Single Value

Subqueries that are introduced with unmodified comparison
operators often include scalar aggregate functions, because these
return a single value.

For example, this statement finds the names of books that are priced
higher than the current minimum price:

select title
from titles
where price >
   (select min(price)
    from titles)

title
---------------------------------------------------
The Busy Executive’s Database Guide
Cooking with Computers: Surreptitious Balance
     Sheets
Straight Talk About Computers
Silicon Valley Gastronomic Treats
But Is It User Friendly?
Secrets of Silicon Valley
Computer Phobic and Non-Phobic Individuals:
     Behavior Variations



Transact-SQL User’s Guide 5-13

Adaptive Server Enterprise Release 11.5.x Expression Subqueries

Is Anger the Enemy?
Life Without Fear
Prolonged Data Deprivation: Four Case Studies
Emotional Security: A New Algorithm
Onions, Leeks, and Garlic: Cooking Secrets of the
     Mediterranean
Fifty Years in Buckingham Palace Kitchens
Sushi, Anyone?

(14 rows affected)

group by and having in Expression Subqueries

Because subqueries that are introduced by unmodified comparison
operators must return a single value, they cannot include group by and
having clauses unless you know that the group by and having clauses will
return a single value.

For example, this query finds the books that are priced higher than
the lowest priced book in the trad_cook category:

select title
from titles
where price >
   (select min(price)
    from titles
    group by type
    having type = "trad_cook")

Using distinct with Expression Subqueries

Subqueries that are introduced with unmodified comparison
operators often include the distinct keyword to return a single value.

For example, without distinct, the following subquery would fail
because it would return more than one value:

select pub_name from publishers
    where pub_id =
        (select distinct pub_id
        from titles
        where pub_id  = publishers.pub_id)



5-14 Subqueries: Using Queries Within Other Queries

Quantified Predicate Subqueries Adaptive Server Enterprise Release 11.5.x

Quantified Predicate Subqueries

Quantified predicate subqueries, which return a list of 0 and higher
values, are subqueries in a where or having clause that are connected by
any, all, in, or exists. The any or all subquery operators modify
comparison operators.

There are three types of quantified predicate subqueries:

• any/all subqueries. Subqueries introduced with a modified
comparison operator, which may include a group by or having
clause, take the general form:

[Start of select, insert, update, delete statement; or subquery]

where expression comparison_operator  [any | all]
    ( subquery )

[End of select, insert, update, delete statement; or subquery]

• in/not in subqueries. Subqueries introduced with in or not in take
the general form:

[Start of select, insert, update, delete statement; or subquery]

where expression  [not] in ( subquery )

[End of select, insert, update, delete statement; or subquery]

• exists/not exists subqueries. Subqueries introduced by exists or not
exists are existence tests which take the general form:

[Start of select, insert, update, delete statement; or subquery]

where [not] exists ( subquery )

[End of select, insert, update, delete statement; or subquery]

Though Adaptive Server allows the keyword distinct in quantified
predicate subqueries, it always processes the subquery as if distinct
were not included.

Subqueries with any and all

The keywords all and any modify a comparison operator that
introduces a subquery.

When any is used with <, >, or = with a subquery, it returns results
when any value retrieved in the subquery matches the value in the
where or having clause of the outer statement.



Transact-SQL User’s Guide 5-15

Adaptive Server Enterprise Release 11.5.x Quantified Predicate Subqueries

When all is used with < or > in a subquery, it returns results when all
values retrieved in the subquery match the value in the where or having
clause of the outer statement.

The syntax for any and all is:

{where | having} [not]
expression comparison_operator  {any |all}
( subquery )

Using the > comparison operator as an example:

• > all means greater than every value, or greater than the maximum
value. For example, > all (1, 2, 3) means greater than 3.

• > any means greater than at least one value, or greater than the
minimum value. Therefore, > any (1, 2, 3) means greater than 1.

If you introduce a subquery with all and a comparison operator does
not return any values, the entire query fails.

The use of all and any can be tricky because computers cannot tolerate
the ambiguity that these words sometimes have in English. For
example, you might ask the question “Which books commanded an
advance greater than any book published by New Age Books?”

You can paraphrase this question to make its SQL “translation” more
clear: “Which books commanded an advance greater than the largest
advance paid by New Age Books?” The all keyword, not the any
keyword, is required here:

select title
from titles
where advance > all
   (select advance
    from publishers, titles
    where titles.pub_id = publishers.pub_id
    and pub_name = "New Age Books")

title
----------------------------------------
The Gourmet Microwave

(1 row affected)

For each title, the outer query gets the titles and advances from the
titles table, and it compares these to the advance amounts paid by
New Age Books returned from the subquery. The outer query looks
at the largest value in the list and determines whether the title being
considered has commanded an even greater advance.



5-16 Subqueries: Using Queries Within Other Queries

Quantified Predicate Subqueries Adaptive Server Enterprise Release 11.5.x

> all Means Greater Than All Values

The > all operator means that the value in the column that introduces
the subquery must be greater than each of the values returned by the
subquery, in order for a row to satisfy the condition in the outer
query.

For example, to find the books that are priced higher than the
highest-priced book in the mod_cook category:

select title from titles where price > all
    (select price from titles
    where type = "mod_cook")

title
---------------------------------------------------
But Is It User Friendly?
Secrets of Silicon Valley
Computer Phobic and Non-Phobic Individuals:
    Behavior Variations
Onions, Leeks, and Garlic: Cooking Secrets of
    the Mediterranean

(4 rows affected)

However, if the set returned by the inner query contains a NULL, the
query returns 0 rows. This is because NULL stands for “value
unknown,” and it is impossible to tell whether the value you are
comparing is greater than an unknown value.

For example, try to find the books that are priced higher than the
highest-priced book in the popular_comp category:

select title from titles where price > all
    (select price from titles
    where type = "popular_comp")

title
---------------------------------------------------

(0 rows affected)

No rows were returned because the subquery found that one of the
books, Net Etiquette, has a null price.

= all Means Equal to Every Value

The = all operator means that the value in the column that introduces
the subquery must be the same as each value in the list of values



Transact-SQL User’s Guide 5-17

Adaptive Server Enterprise Release 11.5.x Quantified Predicate Subqueries

returned by the subquery, in order for a row to satisfy the outer
query.

For example, the following query finds out which authors live in the
same city by looking at the postal code:

select au_fname, au_lname, city
from authors
where city = all
     (select city
     from authors
     where postalcode like "946%")

> any Means Greater Than At Least One Value

> any means that the value in the column that introduces the subquery
must be greater than at least one of the values in the list returned by
the subquery, in order for a row to satisfy the outer query.

The following example is introduced with a comparison operator
modified by any. It finds each title that has an advance larger than any
advance amount paid by New Age Books.

select title
from titles
where advance > any
   (select advance
    from titles, publishers
    where titles.pub_id = publishers.pub_id
    and pub_name = "New Age Books")

title
---------------------------------------------------
The Busy Executive’s Database Guide
Cooking with Computers: Surreptitious Balance
    Sheets
You Can Combat Computer Stress!
Straight Talk About Computers
The Gourmet Microwave
But Is It User Friendly?
Secrets of Silicon Valley
Computer Phobic and Non-Phobic Individuals:



5-18 Subqueries: Using Queries Within Other Queries

Quantified Predicate Subqueries Adaptive Server Enterprise Release 11.5.x

    Behavior Variations
Is Anger the Enemy?
Life Without Fear
Emotional Security: A New Algorithm
Onions, Leeks, and Garlic: Cooking Secrets of
    the Mediterranean
Fifty Years in Buckingham Palace Kitchens
Sushi, Anyone?

(14 rows affected)

For each title selected by the outer query, the inner query finds a list
of advance amounts paid by New Age Books. The outer query looks
at all the values in the list and determines whether the title being
considered has commanded an advance that is larger than any of
those values. In other words, this example finds titles with advances
as large or larger than the lowest value paid by New Age Books.

If the subquery does not return any values, the entire query fails.

= any Means Equal to Some Value

The = any operator is an existence check; it is equivalent to in. For
example, to find authors that live in the same city as any publisher,
you can use either =any or in:

select au_lname, au_fname
from authors
where city = any
   (select city
    from publishers)

select au_lname, au_fname
from authors
where city in
   (select city
    from publishers)

au_lname       au_fname
-------------- --------------
Carson         Cheryl
Bennet         Abraham

(2 rows affected)

However, the != any operator is different from not in. The != any operator
means “not = a or not = b or not = c”; not in means “not = a and not =
b and not = c”.



Transact-SQL User’s Guide 5-19

Adaptive Server Enterprise Release 11.5.x Quantified Predicate Subqueries

For example, to find the authors who live in a city where no
publisher is located:

select au_lname, au_fname
from authors
where city != any
   (select city
    from publishers)

The results include all 23 authors. This is because every author lives
in some city where no publisher is located, and each author lives in
only one city.

What happens is that the inner query finds all the cities in which
publishers are located, and then, for each city, the outer query finds
the authors who do not live there.

Here is what happens when you substitute not in in the same query:

select au_lname, au_fname
from authors
where city not in
   (select city
    from publishers)

au_lname          au_fname
--------------         ------------
White                   Johnson
Green                   Marjorie
O'Leary                 Michael
Straight                Dick
Smith                   Meander
Dull                    Ann
Gringlesby              Burt
Locksley                Chastity
Greene                  Morningstar
Blotchet-Halls          Reginald
Yokomoto                Akiko
del Castillo            Innes
DeFrance                Michel
Stringer                Dirk
MacFeather              Stearns
Karsen                  Livia
Panteley                Sylvia
Hunter                  Sheryl
McBadden                Heather
Ringer                  Anne
Ringer                  Albert

(21 rows affected)



5-20 Subqueries: Using Queries Within Other Queries

Quantified Predicate Subqueries Adaptive Server Enterprise Release 11.5.x

These are the results you want. They include all the authors except
Cheryl Carson and Abraham Bennet, who live in Berkeley, where
Algodata Infosystems is located.

You get the same results as in the preceding example with the !=all
operator, which is equivalent to not in:

select au_lname, au_fname
from authors
where city != all
   (select city
    from publishers)

Subqueries Used with in

Subqueries that are introduced with the keyword in return a list of 0
and higher values. For example, this query finds the names of the
publishers who have published business books:

select pub_name
from publishers
where pub_id in
   (select pub_id
    from titles
    where type = "business")

pub_name
----------------------------------------
New Age Books
Algodata Infosystems

(2 rows affected)

This statement is evaluated in two steps. First, the inner query
returns the identification numbers of the publishers who have
published business books, 1389 and 0736. Second, these values are
substituted in the outer query, which finds the names that go with
the identification numbers in the publishers table. The query looks
like this:

select pub_name
from publishers
where pub_id in ("1389", "0736")

Another way to formulate this query using a subquery is:



Transact-SQL User’s Guide 5-21

Adaptive Server Enterprise Release 11.5.x Quantified Predicate Subqueries

select pub_name
from publishers
where "business" in
   (select type
    from titles
    where pub_id = publishers.pub_id)

Note that the expression following the where keyword in the outer
query can be a constant as well as a column name. You can use other
types of expressions, such as combinations of constants and column
names.

The preceding queries, like many other subqueries, can be
alternatively formulated as a join query:

select distinct pub_name
from publishers, titles
where publishers.pub_id = titles.pub_id
and type = "business"

Both this query and the subquery versions find publishers who have
published business books. All are equally correct and produce the
same results, though you may need to use the distinct keyword to
eliminate duplicates.

However, one advantage of using a join query rather than a
subquery for this and similar problems is that a join query shows
columns from more than one table in the result. For example, to
include the titles of the business books in the result, you would need
to use the join version:

select pub_name, title
from publishers, titles
where publishers.pub_id = titles.pub_id
and type = "business"

pub_name               title
--------------------   ----------------------------------------
Algodata Infosystems   The Busy Executive’s Database Guide
Algodata Infosystems   Cooking with Computers: Surreptitious
                       Balance Sheets
New Age Books          You Can Combat Computer Stress!
Algodata Infosystems   Straight Talk About Computers

(4 rows affected)

Here is another example of a statement that can be formulated either
with a subquery or with a join query. The English version of the
query is: “Find the names of all second authors who live in California
and receive less than 30 percent of the royalties on a book.” Using a
subquery, the statement is:



5-22 Subqueries: Using Queries Within Other Queries

Quantified Predicate Subqueries Adaptive Server Enterprise Release 11.5.x

select au_lname, au_fname
from authors
where state = "CA"
and au_id in
   (select au_id
    from titleauthor
    where royaltyper < 30
    and au_ord = 2)

au_lname                 au_fname
------------------------ ------------
MacFeather               Stearns

(1 row affected)

The outer query produces a list of the 15 authors who live in
California. The inner query is then evaluated, producing a list of the
IDs of the authors who meet the qualifications.

Notice that more than one condition can be included in the where
clause of both the inner and the outer query.

Using a join, the query is expressed like this:

select au_lname, au_fname
from authors, titleauthor
where state = "CA"
  and authors.au_id = titleauthor.au_id
  and royaltyper < 30
  and au_ord = 2

A join can always be expressed as a subquery. A subquery can often
be expressed as a join.

Subqueries Used with not in

Subqueries that are introduced with the keyword phrase not in also
return a list of 0 and higher values. not in means “not = a and not = b
and not = c”.

This query finds the names of the publishers who have not published
business books, the inverse of the example in “Subqueries Used with
in” on page 5-20:

select pub_name from publishers
where pub_id not in
   (select pub_id
    from titles
    where type = "business")



Transact-SQL User’s Guide 5-23

Adaptive Server Enterprise Release 11.5.x Quantified Predicate Subqueries

pub_name
----------------------------------------
Binnet & Hardley

(1 row affected)

The query is the same as the previous one except that not in is
substituted for in. However, this statement cannot be converted to a
join. The analogous “not equal” join has a different meaning—it
finds the names of publishers who have published some book that is
not a business book. The difficulties interpreting the meaning of joins
that are not based on equality are discussed in more detail in Chapter
4, “Joins: Retrieving Data from Several Tables.”

Subqueries Using not in with NULL

A subquery using not in returns a set of values for each row in the
outer query. If the value in the outer query is not in the set returned
by the inner query, the not in evaluates to TRUE, and the outer query
puts the record being considered in the results.

However, if the set returned by the inner query contains no matching
value, but it does contain a NULL, the not in returns UNKNOWN.
This is because NULL stands for “value unknown,” and it is
impossible to tell whether the value you are looking for is in a set
containing an unknown value. The outer query discards the row. For
example:

select pub_name
    from publishers
    where $100.00 not in
        (select price
         from titles
         where titles.pub_id = publishers.pub_id)

pub_name
------
New Age Books

(1 row affected)

New Age Books is the only publisher that does not publish any
books that cost $100. Binnet & Handley and Algodata Infosystems
were not included in the query results because each publishes a book
whose price is undecided.



5-24 Subqueries: Using Queries Within Other Queries

Quantified Predicate Subqueries Adaptive Server Enterprise Release 11.5.x

Subqueries Used with exists

Use the exists keyword with a subquery to test for the existence of
some result from the subquery. The syntax follows:

{where | having} [not] exists ( subquery )

That is, the where clause of the outer query tests for the existence of
the rows returned by the subquery. The subquery does not actually
produce any data, but returns a value of TRUE or FALSE.

For example, the following query finds the names of all the
publishers who publish business books:

select pub_name
from publishers
where exists
   (select *
    from titles
    where pub_id = publishers.pub_id
    and type = "business")

pub_name
----------------------------------------
New Age Books
Algodata Infosystems

(2 rows affected)

To conceptualize the resolution of this query, consider each
publisher’s name in turn. Does this value cause the subquery to
return at least one row? In other words, does it cause the existence
test to evaluate to TRUE?

In the results of the preceding query, the second publisher’s name is
Algodata Infosystems, which has an identification number of 1389.
Are there any rows in the titles table in which pub_id is 1389 and type
is business? If so, “Algodata Infosystems” should be one of the
values selected. The same process is repeated for each of the other
publisher’s names.

A subquery that is introduced with exists is different from other
subqueries, in these ways:

• The keyword exists is not preceded by a column name, constant,
or other expression.

• The subquery exists evaluates to TRUE or FALSE rather than
returning any data.

• The select list of the subquery usually consists of the asterisk (*).
There is no need to specify column names, since you are simply



Transact-SQL User’s Guide 5-25

Adaptive Server Enterprise Release 11.5.x Quantified Predicate Subqueries

testing for the existence or nonexistence of rows that meet the
conditions specified in the subquery. Otherwise, the select list
rules for a subquery introduced with exists are identical to those
for a standard select list.

The exists keyword is very important, because there is often no
alternative, non-subquery formulation. In practice, a subquery
introduced by exists is always a correlated subquery (see “Using
Correlated Subqueries” on page 5-28).

Although you cannot express some queries formulated with exists in
any other way, you can express all queries that use in or a comparison
operator modified by any or all with exists. Some examples of
statements using exists and their equivalent alternatives follow.

Here are two ways to find authors that live in the same city as a
publisher:

select au_lname, au_fname
from authors
where city = any
   (select city
    from publishers)

select au_lname, au_fname
from authors
where exists
   (select *
    from publishers
    where authors.city = publishers.city)

au_lname          au_fname
--------------    --------------
Carson            Cheryl
Bennet            Abraham

(2 rows affected)

Here are two queries that find titles of books published by any
publisher located in a city that begins with the letter “B”:

select title
from titles
where exists
   (select *
    from publishers
    where pub_id = titles.pub_id
    and city like "B%")



5-26 Subqueries: Using Queries Within Other Queries

Quantified Predicate Subqueries Adaptive Server Enterprise Release 11.5.x

select title
from titles
where pub_id in
   (select pub_id
    from publishers
    where city like "B%")

title
---------------------------------------------------
You Can Combat Computer Stress!
Is Anger the Enemy?
Life Without Fear
Prolonged Data Deprivation: Four Case Studies
Emotional Security: A New Algorithm
The Busy Executive's Database Guide
Cooking with Computers: Surreptitious Balance
    Sheets
Straight Talk About Computers
But Is It User Friendly?
Secrets of Silicon Valley
Net Etiquette

(11 rows affected)

Subqueries Used with not exists

not exists is just like exists except that the where clause in which it is
used is satisfied when no rows are returned by the subquery.

For example, to find the names of publishers who do not publish
business books, the query is:

select pub_name
from publishers
where not exists
   (select *
    from titles
    where pub_id = publishers.pub_id
    and type = "business")

pub_name
----------------------------------------
Binnet & Hardley

(1 row affected)



Transact-SQL User’s Guide 5-27

Adaptive Server Enterprise Release 11.5.x Quantified Predicate Subqueries

This query finds the titles for which there have been no sales:

select title
from titles
where not exists
   (select title_id
    from salesdetail
    where title_id = titles.title_id)

title
-----------------------------------------
The Psychology of Computer Cooking
Net Etiquette

(2 rows affected)

Finding Intersection and Difference with exists

You can use subqueries that are introduced with exists and not exists
for two set theory operations: intersection and difference. The
intersection of two sets contains all elements that belong to both of
the original sets. The difference contains the elements that belong
only to the first set.

The intersection of authors and publishers over the city column is the
set of cities in which both an author and a publisher are located:

select distinct city
from authors
where exists
  (select *
   from publishers
   where authors.city = publishers.city)

city
--------------------
Berkeley

(1 row affected)

The difference between authors and publishers over the city column is
the set of cities where an author lives but no publisher is located, that
is, all the cities except Berkeley:

select distinct city
from authors
where not exists
  (select *
   from publishers
   where authors.city = publishers.city)



5-28 Subqueries: Using Queries Within Other Queries

Using Correlated Subqueries Adaptive Server Enterprise Release 11.5.x

city
--------------------
Gary
Covelo
Oakland
Lawrence
San Jose
Ann Arbor
Corvallis
Nashville
Palo Alto
Rockville
Vacaville
Menlo Park
Walnut Creek
San Francisco
Salt Lake City

(15 rows affected)

Using Correlated Subqueries

You can evaluate many of the previous queries by executing the
subquery once and substituting the resulting values into the where
clause of the outer query; these are noncorrelated subqueries. In
queries that include a repeating subquery, or correlated subquery,
the subquery depends on the outer query for its values. The
subquery is executed repeatedly, once for each row that is selected by
the outer query.

This example finds the names of all authors who earn 100 percent
royalty on a book:

select au_lname, au_fname
from authors
where 100 in
   (select royaltyper
    from titleauthor
    where au_id = authors.au_id)



Transact-SQL User’s Guide 5-29

Adaptive Server Enterprise Release 11.5.x Using Correlated Subqueries

au_lname        au_fname
--------------  ----------
White           Johnson
Green           Marjorie
Carson          Cheryl
Straight        Dick
Locksley        Chastity
Blotchet-Hall   Reginald
del Castillo    Innes
Panteley        Sylvia
Ringer          Albert

(9 rows affected)

Unlike most of the previous subqueries, the subquery in this
statement cannot be resolved independently of the main query. It
needs a value for authors.au_id, but this value is a variable—it
changes as Adaptive Server examines different rows of the authors
table.

This is how the preceding query is evaluated: Transact-SQL
considers each row of the authors table for inclusion in the results, by
substituting the value in each row in the inner query. For example,
suppose Transact-SQL first examines the row for Johnson White.
Then, authors.au_id takes the value “172-32-1176,” which
Transact-SQL substitutes for the inner query:

select royaltyper
from titleauthor
where au_id = "172-32-1176"

The result is 100, so the outer query evaluates to:

select au_lname, au_fname
from authors
where 100 in (100)

Since the where condition is true, the row for Johnson White is
included in the results. If you go through the same procedure with
the row for Abraham Bennet, you can see how that row is not
included in the results.



5-30 Subqueries: Using Queries Within Other Queries

Using Correlated Subqueries Adaptive Server Enterprise Release 11.5.x

Correlated Subqueries with Correlation Names

You can use a correlated subquery to find the types of books that are
published by more than one publisher:

select distinct t1.type
from titles t1
where t1.type in
   (select t2.type
    from titles t2
    where t1.pub_id != t2.pub_id)

type
--------------------
business
psychology

(2 rows affected)

Correlation names are required in the following query to distinguish
between the two roles in which the titles table appears. This nested
query is equivalent to the self-join query:

select distinct t1.type
from titles t1, titles t2
where t1.type = t2.type
and t1.pub_id != t2.pub_id

Correlated Subqueries with Comparison Operators

Expression subqueries can be correlated subqueries. For example, to
find the sales of psychology books where the quantity is less than
average for sales of that title:

select s1.ord_num, s1.title_id, s1.qty
from salesdetail s1
where title_id like "PS%"
and s1.qty <
   (select avg(s2.qty)
    from salesdetail s2
    where s2.title_id = s1.title_id)



Transact-SQL User’s Guide 5-31

Adaptive Server Enterprise Release 11.5.x Using Correlated Subqueries

Following are the results of this query:

ord_num            title_id     qty
------------------ --------     ---
91-A-7             PS3333        90
91-A-7             PS2106        30
55-V-7             PS2106        31
AX-532-FED-452-2Z7 PS7777       125
BA71224            PS7777       200
NB-3.142           PS2091       200
NB-3.142           PS7777       250
NB-3.142           PS3333       345
ZD-123-DFG-752-9G8 PS3333       750
91-A-7             PS7777       180
356921             PS3333       200

(11 rows affected)

The outer query selects the rows of the sales table (or “s1”) one by
one. The subquery calculates the average quantity for each sale being
considered for selection in the outer query. For each possible value of
s1, Transact-SQL evaluates the subquery and puts the record being
considered in the results, if the quantity is less than the calculated
average.

Sometimes a correlated subquery mimics a group by statement. To find
the titles of books that have prices higher than average for books of
the same type, the query is:

select t1.type, t1.title
from titles t1
where t1.price >
   (select avg(t2.price)
    from titles t2
    where t1.type = t2.type)

type         title
---------    --------------------------------------
business     The Busy Executive’s Database Guide
business     Straight Talk About Computers
mod_cook     Silicon Valley Gastronomic Treats
popular_comp But Is It User Friendly?
psychology   Computer Phobic and Non-Phobic
             Individuals: Behavior Variations
psychology   Prolonged Data Deprivation: Four Case
             Studies
trad_cook    Onions, Leeks, and Garlic: Cooking
             Secrets of the Mediterranean

(7 rows affected)



5-32 Subqueries: Using Queries Within Other Queries

Using Correlated Subqueries Adaptive Server Enterprise Release 11.5.x

For each possible value of t1, Transact-SQL evaluates the subquery
and includes the row in the results if the price value of that row is
greater than the calculated average. It is not necessary to group by
type explicitly, because the rows for which the average price is
calculated are restricted by the where clause in the subquery.

Correlated Subqueries in a having Clause

Quantified predicate subqueries can be correlated subqueries.

This example of a correlated subquery in the having clause of an outer
query finds the types of books in which the maximum advance is
more than twice the average within a given group:

select t1.type
from titles t1
group by t1.type
having max(t1.advance) >= any
   (select 2 * avg(t2.advance)
   from titles t2
   where t1.type = t2.type)

type
----------
mod_cook

(1 row affected)

The subquery above is evaluated once for each group that is defined
in the outer query, that is, once for each type of book.



Transact-SQL User’s Guide 6-1

6 Using and Creating Datatypes 6.

A datatype defines the kind of information each column in a table
holds, and how that information is stored. You can use Adaptive
Server system datatypes when you are defining columns, or you can
create and use user-defined datatypes.

This chapter discusses:

• How Transact-SQL Datatypes Work   6-1

• Using System-Supplied Datatypes   6-2

• Converting Between Datatypes   6-12

• Mixed-Mode Arithmetic and Datatype Hierarchy   6-13

• Creating User-Defined Datatypes   6-15

• Getting Information About Datatypes   6-18

How Transact-SQL Datatypes Work

In Transact-SQL, datatypes specify the type of information, size, and
storage format of table columns, stored procedure parameters, and
local variables. For example, the int (integer) datatype stores whole
numbers in the range of plus or minus 231, and the tinyint (tiny
integer) datatype stores whole numbers between 0 and 255 only.

Adaptive Server supplies several system datatypes, and two user-
defined datatypes, timestamp and sysname. You can use the sp_addtype
system procedure to build user-defined datatypes based on the
system datatypes. (User-defined datatypes are discussed in
“Creating User-Defined Datatypes” on page 6-15.)

You must specify a system datatype or user-defined datatype when
declaring a column, local variable, or parameter. The following
example uses the system datatypes char, numeric, and money to define
the columns in the create table statement:

create table sales_daily
    (stor_id char(4),
    ord_num numeric(10,0),
    ord_amt money)

The next example uses the bit system datatype to define the local
variable in the declare statement:

declare @switch bit



6-2 Using and Creating Datatypes

Using System-Supplied Datatypes Adaptive Server Enterprise Release 11.5.x

Subsequent chapters describe in more detail how to declare columns,
local variables, and parameters using the datatypes described in this
chapter. You can determine which datatypes have been defined for
columns of existing tables by using the sp_help system procedure.

Using System-Supplied Datatypes

The following table lists the system-supplied datatypes provided for
various types of information, the synonyms recognized by Adaptive
Server, and the range and storage size for each. The system datatypes
are printed in lowercase characters, although Adaptive Server allows
you to enter them in either uppercase or lowercase. (timestamp and
sysname, like all user-defined datatypes, are case-sensitive.) Most
Adaptive Server-supplied datatypes are not reserved words and can
be used to name other objects.

Table 6-1: Adaptive Server system datatypes

Datatypes by
Category Synonyms Range Bytes of Storage

Exact numeric: integers

tinyint

smallint

int integer

0 to 255

215 -1 (32,767) to -215 (-32,768)

231 -1 (2,147,483,647) to
-231 (-2,147,483,648)

1

2

4

Exact numeric: decimals

numeric (p, s)

decimal (p, s) dec

1038 -1 to -1038

1038 -1 to -1038

2 to 17

2 to 17

Approximate numeric

float (precision)

double precision

real

machine dependent

machine dependent

machine dependent

4 or 8

8

4



Transact-SQL User’s Guide 6-3

Adaptive Server Enterprise Release 11.5.x Using System-Supplied Datatypes

Descriptions of each datatype follow.

Money

smallmoney

money

214,748.3647 to -214,748.3648

922,337,203,685,477.5807 to
-922,337,203,685,477.5808

4

8

Date/time

smalldatetime

datetime

January 1, 1900 to June 6, 2079

January 1, 1753 to December 31,
9999

4

8

Character

char(n)

varchar(n)

nchar(n)

nvarchar(n)

text

character

character varying,
char varying

national character,
national char

nchar varying,
national char
varying, national
character varying

255 characters or fewer

255 characters or fewer

255 bytes or fewer (single-byte
character set)

255 bytes or fewer (single-byte
character set)

231 -1 (2,147,483,647) bytes or
fewer

n

actual entry length

n * @@ncharsize

@@ncharsize *
number of
characters

0 or multiple of 2K

Binary

binary(n)

varbinary(n)

image

255 bytes or fewer

255 bytes or fewer

231 -1 (2,147,483,647) bytes or
fewer

n

actual entry length

0 or multiple of 2K

Bit

bit 0 or 1 1 (one byte holds up
to 8 bit columns)

Table 6-1: Adaptive Server system datatypes (continued)

Datatypes by
Category Synonyms Range Bytes of Storage



6-4 Using and Creating Datatypes

Using System-Supplied Datatypes Adaptive Server Enterprise Release 11.5.x

Exact Numeric Types: Integers

Adaptive Server provides three datatypes, tinyint, smallint, and int,
to store integers (whole numbers). These types are exact numeric
types; they preserve their accuracy during arithmetic operations.

Choose among the integer types based on the expected size of the
numbers to be stored. Internal storage size varies by datatype.

Exact Numeric Types: Decimal Numbers

Use the exact numeric types, numeric and decimal, for numbers that
include decimal points. Data stored in numeric and decimal columns
is packed to conserve disk space and preserves its accuracy to the
least significant digit after arithmetic operations. The numeric and
decimal types are identical in all respects but one: Only numeric types
with a scale of 0 can be used for the IDENTITY column.

The exact numeric types accept two optional parameters, precision
and scale, enclosed within parentheses and separated by a comma:

datatype  [( precision  [, scale ])]

Adaptive Server defines each combination of precision and scale as
a distinct datatype. For example, numeric(10,0) and numeric(5,0) are
two separate datatypes. The precision and scale determine the range
of values that can be stored in a decimal or numeric column:

• The precision specifies the maximum number of decimal digits
that can be stored in the column. It includes all digits to the right
or left of the decimal point. You can specify a precision of 1–38
digits or use the default precision of 18 digits.

• The scale specifies the maximum number of digits that can be
stored to the right of the decimal point. The scale must be less

Table 6-2: Integer datatypes

Datatype Stores Bytes of
Storage

tinyint Whole numbers between 0 and 255, inclusive.
(Negative numbers are not permitted.)

1

smallint Whole numbers between 215 -1 and -215 (32,767
and -32,768), inclusive.

2

int Whole numbers between 231 - 1 and -231

(2,147,483,647 and -2,147,483,648), inclusive.
4



Transact-SQL User’s Guide 6-5

Adaptive Server Enterprise Release 11.5.x Using System-Supplied Datatypes

than or equal to the precision. You can specify a scale of 0–38
digits or use the default scale of 0 digits.

Exact numeric types with a scale of 0 are displayed without a decimal
point. You cannot enter a value that exceeds either the precision or
the scale for the column.

The storage size for a numeric or decimal column depends on its
precision. The minimum storage requirement is 2 bytes for a 1- or
2-digit column. Storage size increases by 1 byte for each additional 2
digits of precision, to a maximum of 17 bytes.

Approximate Numeric Datatypes

The numeric types float, double precision, and real store numeric data
that can tolerate rounding during arithmetic operations.

Approximate numeric datatypes store slightly inaccurate
representations of real numbers, stored as binary fractions. Anytime
an approximate numeric value is displayed, printed, transferred
between hosts, or used in calculations, the numbers lose precision.
Note that isql displays only six significant digits after the decimal
point and rounds the remainder. For more information on precision
and approximate numeric datatypes, see “Approximate Numeric
Datatypes” in the Adaptive Server Reference Manual.

Use the approximate numeric types for data that covers a wide range
of values. They support all aggregate functions and all arithmetic
operations except modulo (%).

The real and double precision types are built on types supplied by the
operating system. The float type accepts an optional precision in
parentheses. float columns with a precision of 1–15 are stored as real;
those with higher precision are stored as double precision. The range
and storage precision for all three types is machine dependent.

Table 6-3 shows the range, display precision, and storage size for
each approximate numeric type.

Table 6-3: Approximate numeric datatypes

Datatype Bytes of Storage

float[(default precision)] 4 for default precision < 16,
8 for default precision >= 16

double precision 8

real 4



6-6 Using and Creating Datatypes

Using System-Supplied Datatypes Adaptive Server Enterprise Release 11.5.x

Character Datatypes

Use the character datatypes to store strings consisting of letters,
numbers, and symbols entered within single or double quotes. You
can use the like keyword to search these strings for particular
characters and the built-in string functions to manipulate their
contents. Strings consisting of numbers can be converted to exact
and approximate numeric datatypes with the convert function, and
then used for arithmetic.

The char(n) datatype stores fixed-length strings, and the varchar(n)
datatype stores variable-length strings, in single-byte character sets
such as English. Their national character counterparts, nchar(n) and
nvarchar(n), store fixed- and variable-length strings in multibyte
character sets such as Japanese. You can specify the maximum
number of characters with n or use the default column length of one
character. For strings longer than 255 bytes, use the text datatype.

Adaptive Server truncates entries to the specified column length
without warning or error, unless you set string_rtruncation on. See the set
command in the Adaptive Server Reference Manual for more
information. The empty string, ““ or ‘’ , is stored as a single space
rather than as NULL. Thus, “abc” + ““ + “def” is equivalent to “abc
def”, not to “abcdef”.

Fixed- and variable-length columns behave somewhat differently:

• Data in fixed-length columns is blank-padded to the column
length. For the char datatype, storage size is n bytes; for the nchar

Table 6-4: Character datatypes

Datatype Stores Bytes of Storage

char(n) Fixed-length data, such as social
security numbers or postal codes

n

varchar(n) Data, such as names, that is likely to
vary greatly in length

Actual number of
characters entered

nchar(n) Fixed-length data in multibyte
character sets

n * @@ncharsize

nvarchar(n) Variable-length data in multibyte
character sets

Actual number of
characters
* @@ncharsize

text Up to 2,147,483,647 bytes of printable
characters on linked lists of data
pages

0 when uninitialized;
a multiple of 2K after
initialization



Transact-SQL User’s Guide 6-7

Adaptive Server Enterprise Release 11.5.x Using System-Supplied Datatypes

datatype, n times the average national character length
(@@ncharsize). When you create a char or nchar column that allows
nulls, Adaptive Server converts it to a varchar or nvarchar column
and uses the storage rules for those datatypes. (This is not true of
char and nchar variables and parameters.)

• Data in variable-length columns is stripped of trailing blanks;
storage size is the actual length of the data. For varchar columns,
this is the number of characters; for nvarchar columns, it is the
number of characters times the average character length.
Variable-length character data may require less space than fixed-
length data, but it is accessed somewhat more slowly.

text Datatype

The text datatype stores up to 2,147,483,647 bytes of printable
characters on linked lists of separate data pages. Each page stores a
maximum of 1800 bytes of data.

To save storage space, define text columns as NULL. When you
initialize a text column with a non-null insert or update, Adaptive
Server assigns a text pointer and allocates an entire 2K data page to
hold the value.

You cannot use the text datatype:

• For parameters to stored procedures, as values passed to these
parameters or for local variables

• For parameters to remote procedure calls (RPCs)

• In order by, compute, group by, or union clauses

• In an index

• In subqueries or joins

• In a where clause, except with the keyword like

• With the + concatenation operator

• In the if update clause of a trigger

If you are using databases connected with Component Integration
Services, there are several differences in the way text datatypes are
handled. See the Component Integration Services User’s Guide for more
information.

For more information about the text datatype, see “Changing text
and image Data” on page 8-30.



6-8 Using and Creating Datatypes

Using System-Supplied Datatypes Adaptive Server Enterprise Release 11.5.x

Binary Datatypes

The binary datatypes store raw binary data, such as pictures, in a
hexadecimal-like notation. Binary data begins with the characters
“0x” and includes any combination of digits and the uppercase and
lowercase letters A–F. The two digits following “0x” in binary and
varbinary data indicate the type of number: “00” represents a positive
number and “01” represents a negative number.

If the input value does not include the “0x”, Adaptive Server
assumes that the value is an ASCII value and converts it.

The following table summarizes the storage requirements for the
binary datatypes:

➤ Note
Adaptive Server manipulates the binary types in a platform-specific

manner. For true hexadecimal data, use the hextoint and inttohex functions.

See Chapter 10, “Using the Built-In Functions in Queries.”

Use the binary(n) and varbinary(n) datatypes to store data up to 255
bytes in length. Each byte of storage holds 2 binary digits. Specify the
column length with n, or use the default length of 1 byte. If you enter
a value longer than n, Adaptive Server truncates the entry to the
specified length without warning or error.

• Use the fixed-length binary type, binary(n), for data in which all
entries are expected to have a similar length. Because entries in
binary columns are zero-padded to the column length, they may
require more storage space than those in varbinary columns, but
they are accessed somewhat faster.

• Use the variable-length binary type, varbinary(n), for data that is
expected to vary greatly in length. Storage size is the actual size of
the data values entered, not the column length. Trailing zeros are
truncated.

Table 6-5: Binary datatypes

Datatype Bytes of Storage

binary(n) n

varbinary(n) Actual length of entry

image 0 when uninitialized; a multiple of 2K after initialization



Transact-SQL User’s Guide 6-9

Adaptive Server Enterprise Release 11.5.x Using System-Supplied Datatypes

When you create a binary column that allows nulls, Adaptive Server
converts it to a varbinary column and uses the storage rules for that
datatype.

You can search binary strings with the like keyword and operate on
them with the built-in string functions. Because the exact form in
which you enter a particular value depends upon the hardware you
are using, calculations involving binary data may produce
different results on different platforms.

image Datatype

Use the image datatype to store larger blocks of binary data on
external data pages. An image column can store up to 2,147,483,647
bytes of data on linked lists of data pages separate from other data
storage for the table.

When you initialize an image column with a non-null insert or update,
Adaptive Server assigns a text pointer and allocates an entire 2K data
page to hold the value. Each page stores a maximum of 1800 bytes.

To save storage space, define image columns as NULL. To add image
data without saving large blocks of binary data in your transaction
log, use writetext. See the Adaptive Server Reference Manual for details
on writetext.

You cannot use the image datatype:

• For parameters to stored procedures, as values passed to these
parameters or for local variables

• For parameters to remote procedure calls (RPCs)

• In order by, compute, group by, or union clauses

• In an index

• In subqueries or joins

• In a where clause, except with the keyword like

• With the + concatenation operator

• In the if update clause of a trigger

If you are using databases connected with Component Integration
Services, there are several differences in the way image datatypes are
handled. See the Component Integration Services User’s Guide for more
information.

For more information about the image datatype, see “Changing text
and image Data” on page 8-30.



6-10 Using and Creating Datatypes

Using System-Supplied Datatypes Adaptive Server Enterprise Release 11.5.x

Money Datatypes

The money datatypes, money and smallmoney, store monetary data.
You can use these datatypes for U.S. dollars and other decimal
currencies, although Adaptive Server provides no means to convert
from one currency to another. You can use all arithmetic operations
except modulo, and all aggregate functions, with money and
smallmoney data.

Both money and smallmoney are accurate to one ten-thousandth of a
monetary unit, but round values up to two decimal places for
display purposes. The default print format places a comma after
every 3 digits.

Table 6-6 summarizes the range and storage requirements for money
datatypes:

Date and Time Datatypes

Use the datetime and smalldatetime datatypes to store date and time
information from January 1, 1753 through December 31, 9999. Dates
outside this range must be entered, stored, and manipulated as char
or varchar values.

• datetime columns hold dates between January 1, 1753 and
December 31, 9999. datetime values are accurate to 1/300 second
on platforms that support this level of granularity. Storage size is
8 bytes: 4 bytes for the number of days since the base date of
January 1, 1900 and 4 bytes for the time of day.

• smalldatetime columns hold dates from January 1, 1900 to June 6,
2079, with accuracy to the minute. Its storage size is 4 bytes:
2 bytes for the number of days after January 1, 1900, and 2 bytes
for the number of minutes after midnight.

Enclose date and time information in single or double quotes. You
can enter it in either uppercase or lowercase letters and include

Table 6-6: Money datatypes

Datatype Range Bytes of Storage

money Monetary values between
+922,337,203,685,477.5807 and
-922,337,203,685,477.5808

8

smallmoney Monetary values between +214,748.3647
and -214,748.3648

4



Transact-SQL User’s Guide 6-11

Adaptive Server Enterprise Release 11.5.x Using System-Supplied Datatypes

spaces between data parts. Adaptive Server recognizes a wide
variety of data entry formats, which are described in Chapter 8,
“Adding, Changing, and Deleting Data.” However, Adaptive Server
rejects values such as 0 or 00/00/00, which are not recognized as
dates.

The default display format for dates is “Apr 15 1987 10:23PM”. You
can use the convert function for other styles of date display. You can
also do some arithmetic calculations on datetime values with the
built-in date functions, though Adaptive Server may round or
truncate millisecond values.

The following table summarizes the range and storage requirements
for date datatypes:

The bit Datatype

Use bit columns for true and false or yes and no types of data. bit
columns hold either 0 or 1. Integer values other than 0 or 1 are
accepted, but are always interpreted as 1. Storage size is 1 byte.
Multiple bit datatypes in a table are collected into bytes. For example,
7-bit columns fit into 1 byte; 9-bit columns take 2 bytes.

Columns of datatype bit cannot be NULL and cannot have indexes
on them. The status column in the syscolumns system table indicates
the unique offset position for bit columns.

The timestamp Datatype

The timestamp user-defined datatype is necessary for columns in
tables that are to be browsed in Open Client™ DB-Library
applications.

Every time a row containing a timestamp column is inserted or
updated, the timestamp column is automatically updated. A table can
have only one column of the timestamp datatype. A column named

Table 6-7: Date datatypes

Datatype Range Bytes of
Storage

datetime January 1, 1753 to December 31, 9999 8

smalldatetime January 1, 1900 to June 6, 2079 4



6-12 Using and Creating Datatypes

Converting Between Datatypes Adaptive Server Enterprise Release 11.5.x

timestamp will automatically have the system datatype timestamp. Its
definition is:

varbinary(8) "NULL"

Because timestamp is a user-defined datatype, you cannot use it to
define other user-defined datatypes. You must enter it as
“timestamp” in all lowercase letters.

The sysname Datatype

sysname is a user-defined datatype that is used in the system tables.
Its definition is:

varchar(30) "NULL"

You cannot use the sysname datatype to create a column. You can,
however, create a user-defined datatype with a base type of sysname.
You can then use this user-defined datatype to create columns. For
more information about user-defined datatypes, see “Creating User-
Defined Datatypes” on page 6-15.

Converting Between Datatypes

Adaptive Server automatically handles many conversions from one
datatype to another. These are called implicit conversions. You can
explicitly request other conversions with the convert, inttohex, and
hextoint functions. Still other conversions cannot be done, either
explicitly or automatically, because of incompatibilities between the
datatypes.

For example, Adaptive Server automatically converts char
expressions to datetime for the purposes of a comparison, if they can
be interpreted as datetime values. However, for the purposes of
display, you must use the convert function to convert char to int.
Similarly, you must use convert on integer data if you want Adaptive
Server to treat it as character data so that you can use the like keyword
with it.

The syntax for the convert function is:

convert ( datatype , expression , [ style ])

In the following example, convert displays the total_sales column
using the char datatype, in order to display all sales beginning with
the digit 2:



Transact-SQL User’s Guide 6-13

Adaptive Server Enterprise Release 11.5.x Mixed-Mode Arithmetic and Datatype Hierarchy

select title, total_sales
from titles
where convert (char(20), total_sales) like "2%"

The optional style parameter is used to convert datetime values to char
or varchar datatypes in order to get a wide variety of date display
formats.

See Chapter 10 for details on the convert, inttohex, and hextoint functions.

Mixed-Mode Arithmetic and Datatype Hierarchy

When you perform arithmetic on values with different datatypes,
Adaptive Server must determine the datatype and, in some cases, the
length and precision, of the result.

Each system datatype has a datatype hierarchy, which is stored in
the systypes system table. User-defined datatypes inherit the
hierarchy of the system type on which they are based.

The following query ranks the datatypes in a database by hierarchy.
In addition to the information shown below, your query results will
include information about any user-defined datatypes in the
database:

select name, hierarchy
from systypes
order by hierarchy

name  hierarchy
---------------------------    ---------
floatn                                 1
float                                  2
datetimn                               3
datetime                               4
real                                   5
numericn                               6
numeric                                7
decimaln                               8
decimal                                9
moneyn                                10
money                                 11
smallmoney                            12
smalldatetime                         13
intn                                  14
int                                   15
smallint                              16
tinyint                               17
bit                                   18



6-14 Using and Creating Datatypes

Mixed-Mode Arithmetic and Datatype Hierarchy Adaptive Server Enterprise Release 11.5.x

id                                    19
tid                                   19
sysname                               19
varchar                               19
nvarchar                              19
char                                  20
nchar                                 20
timestamp                             21
varbinary                             21
binary                                22
text                                  23
image                                 24

(30 rows affected)

The datatype hierarchy determines the results of computations using
values of different datatypes. The result value is assigned the
datatype that is closest to the top of the list.

In the following example, qty from the sales table is multiplied by
royalty from the roysched table. qty is a smallint, which has a hierarchy
of 16; royalty is an int, which has a hierarchy of 15. Therefore, the
datatype of the result is an int.

smallint(qty) * int(royalty) = int

Working with money Datatypes

If you are combining money and literals or variables, and you need
results of money type, use money literals or variables:

select moneycol * $2.5 from mytable

If you are combining money with a float or numeric datatype from
column values, use the convert function:

select convert (money, moneycol * percentcol)
    from debits, interest

Determining Precision and Scale

For the numeric and decimal types, each combination of precision and
scale is a distinct Adaptive Server datatype. If you perform
arithmetic on two numeric or decimal values, n1 with precision p1 and
scale s1, and n2 with precision p2 and scale s2, Adaptive Server



Transact-SQL User’s Guide 6-15

Adaptive Server Enterprise Release 11.5.x Creating User-Defined Datatypes

determines the precision and scale of the results as shown in Table 6-
8:

Creating User-Defined Datatypes

A Transact-SQL enhancement to SQL allows you to name and design
your own datatypes to supplement the system datatypes. A user-
defined datatype is defined in terms of system datatypes. You can
give one name to a frequently used datatype definition. This makes
it easy for you to custom fit datatypes to columns.

➤ Note
To use a user-defined datatype in more than one database, create it in the

model database. The user-defined datatype definition then becomes

known to all new databases you create.

Once you define a datatype, it can be used as the datatype for any
column in the database. For example, tid is used as the datatype for
columns in several pubs2 tables: titles.title_id, titleauthor.title_id,
sales.title_id, and roysched.title_id.

The advantage of user-defined datatypes is that you can bind rules
and defaults to them for use in several tables. For more about this
topic, see Chapter 12, “Defining Defaults and Rules for Data.”

Use the system procedure sp_addtype to create user datatypes. It takes
as parameters the name of the user datatype being created, the
Adaptive Server-supplied datatype from which it is being built, and
an optional NULL, NOT NULL, or IDENTITY specification.

You can build a user-defined datatype using any system datatype
other than timestamp. User-defined datatypes have the same
datatype hierarchy as the system datatypes on which they are based.

Table 6-8: Precision and scale after arithmetic operations

Operation Precision Scale

n1 + n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 - n2 max(s1, s2) + max(p1 -s1, p2 - s2) + 1 max(s1, s2)

n1 * n2 s1 + s2 + (p1 - s1) + (p2 - s2) + 1 s1 + s2

n1 / n2  max(s1 + p2 + 1, 6) + p1 - s1 + p2 max(s1 + p2 -s2 + 1, 6)



6-16 Using and Creating Datatypes

Creating User-Defined Datatypes Adaptive Server Enterprise Release 11.5.x

Unlike Adaptive Server-supplied datatypes, user-defined datatype
names are case-sensitive.

Here is the syntax for sp_addtype:

sp_addtype datatypename,
phystype  [(length) | (precision [, scale])]
[, "identity" | nulltype ]

Here is how tid was defined:

sp_addtype tid, "char(6)", "not null"

You must enclose a parameter within single or double quotes if it
includes a blank or some form of punctuation or if it is a keyword
other than null (for example, identity or sp_helpgroup). In this example,
quotes are required around char(6) because of the parentheses, but
around NOT NULL because of the blank. They are not required
around tid.

Specifying Length, Precision, and Scale

When you build a user-defined datatype based upon certain
Adaptive Server datatypes, you must specify additional parameters:

• The char, nchar, varchar, nvarchar, binary, and varbinary datatypes
expect a length in parentheses. If you do not supply one,
Adaptive Server assumes the default length of 1 character.

• The float datatype expects a precision in parentheses. If you do
not supply one, Adaptive Server uses the default precision for
your platform.

• The numeric and decimal datatypes expect a precision and scale, in
parentheses and separated by a comma. If you do not supply
them, Adaptive Server uses a default precision of 18 and scale of
0.

You cannot change the length, precision, or scale specification when
you include the user-defined datatype in a create table statement.

Specifying Null Type

The null type determines how the user-defined datatype treats nulls.
You can create a user-defined datatype with a null type of “null”,
“NULL”, “nonull”, “NONULL”, “not null”, or “NOT NULL”. By
definition, bit and IDENTITY types do not allow null values.



Transact-SQL User’s Guide 6-17

Adaptive Server Enterprise Release 11.5.x Creating User-Defined Datatypes

If you omit the null type, Adaptive Server uses the null mode defined
for the database (by default, NOT NULL). For compatibility with the
SQL standards, use the sp_dboption system procedure to set the allow
nulls by default option to true.

You can override the null type when you include the user-defined
datatype in a create table statement.

Associating Rules and Defaults with User-Defined Datatypes

Once you have created a user-defined datatype, use the system
procedures sp_bindrule and sp_bindefault to associate rules and defaults
with the datatype. Using the sp_help system procedure, you can print
a report that lists the rules, defaults, and other information
associated with the datatype.

Rules and defaults are discussed in Chapter 12, “Defining Defaults
and Rules for Data.” For complete information on system
procedures, see the Adaptive Server Reference Manual.

Creating a User-Defined Datatype with the IDENTITY Property

To create a user-defined datatype with the IDENTITY property, use
the sp_addtype system procedure. The new type must be based on a
physical type of numeric with a scale of 0:

sp_addtype typename , "numeric (precision , 0)",
"identity"

The following example creates a user-defined type, IdentType, with
the IDENTITY property:

sp_addtype IdentType, "numeric(4,0)", "identity"

When you create a column from an IDENTITY type, you can specify
either identity or not null—or neither one—in the create or alter table
statement. The column automatically inherits the IDENTITY
property.

Following are three different ways to create an IDENTITY column
from the IdentType user-defined type:

create table new_table (id_col IdentType)

create table new_table (id_col IdentType identity)

create table new_table (id_col IdentType not null)



6-18 Using and Creating Datatypes

Getting Information About Datatypes Adaptive Server Enterprise Release 11.5.x

➤ Note
If you try to create a column that allows nulls from an IDENTITY type, the

create table or alter table statement fails.

Creating IDENTITY Columns from Other User-Defined Datatypes

You can create IDENTITY columns from user-defined datatypes that
do not have the IDENTITY property. The user-defined types must
have a physical datatype of numeric with a scale of 0 and must be
defined as not null.

Dropping a User-Defined Datatype

To drop a user-defined datatype, execute sp_droptype:

sp_droptype typename

➤ Note
You cannot drop a datatype that is already in use in any table.

Getting Information About Datatypes

Use the sp_help system procedure to display information about the
properties of a system datatype or a user-defined datatype. The
report indicates the base type from which the datatype was created,
whether it allows nulls, the names of any rules and defaults bound to
the datatype, and whether it has the IDENTITY property.

The following examples display the information about the money
system datatype and the tid user-defined datatype:

sp_help money

Type_name  Storage_type Length Prec  Scale
---------- ------------ ------ ----- -----
money      money             8 NULL  NULL

Nulls   Default_name  Rule_name   Identity
-----   ------------  ---------   --------
    1   NULL          NULL  NULL

(return status = 0)



Transact-SQL User’s Guide 6-19

Adaptive Server Enterprise Release 11.5.x Getting Information About Datatypes

sp_help tid

Type_name  Storage_type Length Prec  Scale
---------- ------------ ------ ----- -----
tid        varchar           6 NULL  NULL

Nulls   Default_name  Rule_name   Identity
-----   ------------  ---------   --------
    0   NULL          NULL               0

(return status = 0)



6-20 Using and Creating Datatypes

Getting Information About Datatypes Adaptive Server Enterprise Release 11.5.x



Transact-SQL User’s Guide 7-1

7 Creating Databases and Tables 7.

This chapter describes how to create databases and tables, a process
called data definition. It discusses:

• What Are Databases and Tables?   7-1

• Using and Creating Databases   7-4

• Altering the Sizes of Databases   7-9

• Dropping Databases   7-10

• Creating Tables   7-10

• Defining Integrity Constraints for Tables   7-27

• How to Design and Create a Table   7-39

• Creating New Tables from Query Results: select into   7-42

• Altering Existing Tables   7-48

• Dropping Tables   7-53

• Assigning Permissions to Users   7-54

• Getting Information About Databases and Tables   7-55

If you do not plan to create your own databases and tables, read
about the basic database and table concepts (described under ‘‘What
Are Databases and Tables?,’’ below) and about the use command
(described under “Choosing a Database: use” on page 7-5). Then
skip the rest of this chapter.

See also the System Administration Guide for information on
managing databases.

What Are Databases and Tables?

A database stores information (data) in a set of database objects, such
as tables, that relate to each other. A table is a collection of rows that
have associated columns containing individual data items. You
define how your data is organized when you create your databases
and tables. This process is called data definition.

Adaptive Server database objects include:

• Tables

• Rules



7-2 Creating Databases and Tables

What Are Databases and Tables? Adaptive Server Enterprise Release 11.5.x

• Defaults

• Stored procedures

• Triggers

• Views

• Referential integrity constraints

• Check integrity constraints

This chapter covers only the creation, modification, and deletion of
databases and tables, including integrity constraints. See the
following chapters for information on creating other objects:

• Chapter 9, “Views: Limiting Access to Data”

• Chapter 12, “Defining Defaults and Rules for Data”

• Chapter 14, “Using Stored Procedures”

• Chapter 15, “Using Extended Stored Procedures”

• Chapter 16, “Triggers: Enforcing Referential Integrity”

Columns and datatypes define the type of data included in tables;
indexes describe how that data is organized in tables. They are not
considered database objects by Adaptive Server and are not listed in
sysobjects. Columns and datatypes are covered in this chapter;
indexes are discussed in Chapter 11, “Creating Indexes on Tables.”

Enforcing Data Integrity in Databases

Data integrity refers to the correctness and completeness of data
within a database. To enforce data integrity, you can constrain or
restrict the data values that users can insert, delete, or update in the
database. For example, the integrity of data in the pubs2 and pubs3
databases requires that a book title in the titles table must have a
publisher in the publishers table. You must not insert books into titles
that do not have a valid publisher, because it violates the data
integrity of pubs2 or pubs3.

Transact-SQL provides several mechanisms for integrity
enforcement in a database such as rules, defaults, indexes, and
triggers. They allow you to maintain the following types of data
integrity:

• Requirement – requires that a table column must contain a valid
value in every row; it cannot allow null values. The create table
statement allows you to restrict null values for a column.



Transact-SQL User’s Guide 7-3

Adaptive Server Enterprise Release 11.5.x What Are Databases and Tables?

• Check or Validity – limits or restricts the data values inserted
into a table column. You can use triggers or rules to enforce this
data integrity.

• Uniqueness – requires that no two table rows have the same non-
null values for one or more table columns. You can use indexes to
enforce this integrity.

• Referential – requires that data inserted into a table column must
already have matching data in another table column or another
column in the same table. A single table can have up to 192
references.

Consistency of data values in the database is another example of data
integrity, which is described in Chapter 18, “Transactions:
Maintaining Data Consistency and Recovery.”

As an alternative to using rules, defaults, indexes, and triggers,
Transact-SQL provides a series of integrity constraints as part of the
create table statement to enforce data integrity as defined by the SQL
standards. These integrity constraints are described later in this
chapter.

Permissions Within Databases

Whether or not you can create and drop databases and database
objects depends on your permissions or privileges. Ordinarily, a
System Administrator or Database Owner sets up the permissions
for you, based on the kind of work you do and the functions you
need. These permissions can be different for each user in a given
installation or database.

You can determine what your permissions are by executing:

sp_helprotect user_name

where user_name is your Adaptive Server login name.

To make your experiments with database objects as convenient as
possible, the pubs2 and pubs3 databases have a “guest” user name in
their sysusers system tables. The scripts that create pubs2 and pubs3
grant a variety of permissions to “guest”.

The “guest” mechanism means that anyone who has a login on
Adaptive Server, that is, is listed in master..syslogins, has access to
pubs2 and pub3, and permission to create and drop objects such as
tables, indexes, defaults, rules, procedures, and so on. The “guest”
user name also allows you to use certain stored procedures, create



7-4 Creating Databases and Tables

Using and Creating Databases Adaptive Server Enterprise Release 11.5.x

user-defined datatypes, query the database, and modify the data in
it.

To use the pubs2 or pubs3 database, issue the use command. Adaptive
Server checks whether you are listed under your own name in
pubs2..sysusers or pubs3..sysusers. If not, you are admitted as a guest
without any action on your part. If you are listed in the sysusers table
for pubs2 or pubs3, Adaptive Server admits you as yourself, but may
give you different permissions from those of “guest”. All the
examples in this chapter assume you are being treated as “guest”.

Most users can look at the system tables in the master database by
means of the “guest” mechanism previously described. Users who
are not recognized by name in the master database are allowed in and
treated as a user named “guest”. The “guest” user is added to the
master database in the script that creates the master database when it
is installed.

A Database Owner, “dbo”, can add a “guest” user to any user
database with the sp_adduser system procedure. System
Administrators automatically become the Database Owner in any
database they use. For more information, see the System
Administration Guide and the Adaptive Server Reference Manual.

Using and Creating Databases

A database is a collection of related tables and other database
objects—views, indexes, and so on.

When Adaptive Server is first installed, it contains these system
databases:

• The master database controls the user databases and the operation
of Adaptive Server as a whole.

• The sybsystemprocs database contains the system stored
procedures.

• The temporary database, tempdb, stores temporary objects,
including temporary tables created with the name prefix
“tempdb..”.

• The model database is used by Adaptive Server as a template for
creating new user databases.

In addition, System Administrators can install the following optional
databases:



Transact-SQL User’s Guide 7-5

Adaptive Server Enterprise Release 11.5.x Using and Creating Databases

• pubs2 – a sample database that contains data representing a
publishing operation. You can use this database to test your
server connections and learn Transact-SQL. Most of the examples
in the Adaptive Server documentation query the pubs2 database.

• pubs3 – a version of pubs2 that uses referential integrity examples.
pubs3 has a new table, store_employees, which uses a self-
referencing column. Other differences are that dates and area
codes have been updated, an IDENTITY column has been added
to its sales table, its the primary keys in its master tables use
nonclustered unique indexes, and the titles table has an example
of the numeric datatype.

• interpubs – similar to pubs2, but contains French and German
data.

• jpubs – similar to pubs2, but contains Japanese data. Use it if you
have installed the Japanese Language Module.

• sybsyntax – stores the syntax information for commands and
procedures accessed by the system procedure sp_syntax.

These optional databases are user databases. All of your data is
stored in user databases. Adaptive Server manages each database by
means of system tables. The data dictionary tables in the master
database and in other databases are considered system tables.

Choosing a Database: use

The use command lets you access an existing database. Its syntax is:

use database_name

For example, to access the pubs2 database, type:

use pubs2

This command allows you to access the pubs2 database only if you
are a known user in pubs2. Otherwise, Adaptive Server displays an
error message. It is up to the owner of the database to give you access
to it by executing the system procedure sp_adduser.

It is likely that you will be automatically connected to the master
database when you log onto Adaptive Server, so if you want to use
another database, issue the use database command. You or a System
Administrator can change the database to which you initially
connect by using the system procedure sp_modifylogin. Only a System
Administrator can change the default database for another user.



7-6 Creating Databases and Tables

Using and Creating Databases Adaptive Server Enterprise Release 11.5.x

Creating a User Database: create database

You can create a new database if a System Administrator has granted
you permission to use the create database command. You must be
using the master database when you create a new database. In many
enterprises, a System Administrator creates all databases. The
creator of a database is its owner. Another user who creates a
database for you can transfer ownership of it to you with the system
procedure sp_changedbowner.

The Database Owner is responsible for giving users access to the
database and for granting and revoking certain other permissions to
users. In some organizations, the Database Owner is also responsible
for maintaining regular backups of the database and for reloading it
in case of system failure. The Database Owner can always
impersonate any other user of the database, temporarily attaining
that user’s permissions, with the setuser command.

Because each database is allocated a significant amount of space,
even if it contains only small amounts of data, you may not be given
permission to use the create database command. If this is the case, you
may want to skip this section and go on to the discussion of creating
database tables, described under “Creating Tables” on page 7-10.

The simplest form of the create database command is:

create database database_name

To create the newpubs database, be sure you are using the master
database rather than pubs2, and then type this command:

create database newpubs

A database name must be unique on Adaptive Server, and must
follow the rules for identifiers described under “Identifiers” on page
1-6. Adaptive Server can manage up to 32,767 databases. You can
create only 1 database at a time. The maximum number of segments
for any database is 32.

Adaptive Server creates a new database as a copy of the model
database, which contains the system tables that belong in every user
database.

The creation of a new database is recorded in the master database
tables sysdatabases and sysusages.



Transact-SQL User’s Guide 7-7

Adaptive Server Enterprise Release 11.5.x Using and Creating Databases

The full syntax of the create database command is:

create database database_name
[on {default | database_device } [= size ]
    [, database_device  [= size ]]...]
[log on database_device  [= size ]
    [, database_device  [= size ]]...]
[with override]
[for load]

This chapter describes all the create database options except for with
override. For information about with override, see the System
Administration Guide.

The on Clause

The optional on clause allows you to specify where to store the
database and how much space to allocate for it in megabytes. If you
use the keyword default, the database is assigned to an available
database device in the pool of default database devices indicated in
the master database table sysdevices. Use the system procedure
sp_helpdevice to see which devices are in the default list.

➤ Note
A System Administrator may have made certain storage allocations based

on performance statistics and other considerations. Before creating

databases, you should check with a System Administrator.

To specify a size of 5MB for a database to be stored in this default
location, use on default = size like this:

create database newpubs
on default = 5

To specify a different location for the database, give the logical name
of the database device on which you want it stored. A database can
be stored on more than one database device, with different amounts
of space on each.

This example creates the newpubs database and allocates to it 3MB on
pubsdata and 2MB on newdata:

create database newpubs
on pubsdata = 3, newdata = 2

If the on clause and the size are omitted, the database is created with
2MB of space from the pool of default database devices indicated in
sysdevices.



7-8 Creating Databases and Tables

Using and Creating Databases Adaptive Server Enterprise Release 11.5.x

A database allocation can range in size from 2MB to 223MB.

The log on Clause

Unless you are creating very small, noncritical databases, always use
the log on database_device extension to create database. It places the
transaction logs on a separate database device. There are several
reasons for placing the logs on a separate device:

• It allows you to use the dump transaction command, rather than
dump database, thus saving time and tapes.

• It allows you to establish a fixed size for the log, keeping it from
competing with other database activity for space.

Additional reasons for placing the log on a separate physical device
from the data tables are:

• It improves performance.

• It ensures full recovery in the event of hard disk crashes.

The following command places the log for newpubs on the logical
device pubslog, with a size of 1MB:

create database newpubs
on pubsdata = 3, newdata = 2
log on pubslog = 1

➤ Note
When you use the log on extension, you are placing the database

transaction log on a segment named “logsegment”. To add more space for

an existing log, use alter database and, in some cases, the sp_extendsegment
system procedure. See the Adaptive Server Reference Manual or the

System Administration Guide for details.

The size of the device required for the transaction log varies
according to the amount of update activity and the frequency of
transaction log dumps. As a rule of thumb, allocate to the log 10
percent to 25 percent of the space you allocate to the database itself.

The for load Option

The optional for load clause invokes a streamlined version of create
database that can only be used for loading a database dump. Use the
for load option for recovery from media failure or for moving a



Transact-SQL User’s Guide 7-9

Adaptive Server Enterprise Release 11.5.x Altering the Sizes of Databases

database from one machine to another. See the System Administration
Guide for further details.

Altering the Sizes of Databases

If a database has filled its allocated storage space, you cannot add
new data or updates to it. Existing data, of course, is always
preserved. If the space allocated for a database proves to be too
small, the Database Owner can increase it with the alter database
command. alter database permission defaults to the Database Owner,
and cannot be transferred. You must be using the master database in
order to use the alter database command.

The default increase is 2MB from the default pool of space. This
statement adds 2MB to newpubs on the default database device:

alter database newpubs

The full alter database syntax allows you to extend a database by a
specified number of megabytes (minimum 1MB) and to specify
where the storage space is to be added:

alter database database_name
[on {default | database_device  } [=  size ]
    [, database_device  [=  size ]]...]
[log on { default | database_device  } [ = size  ]
    [ , database_device  [=  size ]]...]
[with override]
[for load]

The on clause in the alter database command is just like the on clause in
the create database command. The for load clause is just like the for load
clause in the create database command and can be used only on a
database created with the for load clause.

To increase the space allocated for newpubs by 2MB on the database
device pubsdata, and by 3MB on the database device newdata, type:

alter database newpubs
on pubsdata = 2, newdata = 3

When you use alter database to allocate more space on a device already
in use by the database, all of the segments already on that device use
the added space fragment. All the objects already mapped to the
existing segments can now grow into the added space. The
maximum number of segments for any database is 32.

When you use alter database to allocate space on a device that is not yet
in use by a database, the system and default segments are mapped to



7-10 Creating Databases and Tables

Dropping Databases Adaptive Server Enterprise Release 11.5.x

the new device. To change this segment mapping, use sp_dropsegment
to drop the unwanted segments from the device.

➤ Note
Using sp_extendsegment, logsegment, or device_name automatically unmaps

the system and default segments.

For information about with override, see the System Administration
Guide.

Dropping Databases

Use the drop database command to remove a database. drop database
deletes the database and all of its contents from Adaptive Server,
frees the storage space that had been allocated for it, and deletes
references to it from the master database.

The syntax of drop database is:

drop database database_name  [, database_name ]...

You cannot drop a database that is in use, that is, open for reading or
writing by any user.

As indicated, you can drop more than one database in a single
command. For example:

drop database newpubs, newdb

A damaged database cannot be removed with drop database. Use the
dbcc dbrepair command instead.

Creating Tables

When you create a table, you name its columns and supply a
datatype for each column. You can also specify whether a particular
column can hold null values or specify integrity constraints for
columns in the table. There can be as many as 2 billion tables per
database.

Example of Creating a Table

Use the newpubs database you created in the previous section if you
want to try these examples. Otherwise, these changes will affect
another database, like pubs2 or pubs3.



Transact-SQL User’s Guide 7-11

Adaptive Server Enterprise Release 11.5.x Creating Tables

To create a table, use the create table command. Its simplest form is:

create table table_name
( column_name datatype )

For example, to create a table named names with one column named
some_name, and a fixed length of 11 bytes, enter:

create table names
(some_name char(11))

You can define up to 250 columns. If you have set quoted_identifier on,
both the table name and the column names can be delimited
identifiers. Otherwise, they must follow the rules for identifiers
described under “Identifiers” on page 1-6. Column names must be
unique within a given table, but you can use the same column name
in different tables in the same database.

There must be a datatype for each column. The word “char” after the
column name in the example above refers to the datatype of the
column—the type of value that column will contain. Datatypes are
discussed in Chapter 6, “Using and Creating Datatypes.”

The number in parentheses after the datatype gives the maximum
number of bytes that can be stored in the column. You give a
maximum length for some datatypes. Others have a system-defined
length.

Be sure to put parentheses around the list of column names, and
commas after each column definition. (The last column definition
does not need a comma after it.)

Choosing Table Names

The create table command builds the new table in the currently open
database. Table names must be unique for each user.

You can create temporary tables either by preceding the table name
in a create table statement with a pound sign (#) or by specifying the
name prefix “tempdb..”. For more information on temporary tables,
see “Using Temporary Tables” on page 7-23.

You can use any tables or other objects that you have created without
qualifying their names. You can also use objects created by the
Database Owner without qualifying their names, as long as you have
the appropriate permissions on them. These rules hold for all users,
including the System Administrator and the Database Owner.

While table names must be unique for each user, different users can
create tables of the same name. For example, a user named “jonah”



7-12 Creating Databases and Tables

Creating Tables Adaptive Server Enterprise Release 11.5.x

and a user named “sally” can create tables named info. Users who
have permissions on both tables have to qualify them as jonah.info
and sally.info. Sally has to qualify references to Jonah’s table as
jonah.info, but she can refer to her own table simply as info.

create table Syntax

The syntax of the create table command is:

 create table [ database .[ owner ].] table_name
( column_name datatype
    [default { constant_expression | user | null}]
    {[{identity | null | not null}]
    | [[constraint constraint_name ]
        {{unique | primary key}
           [clustered | nonclustered]
        [with {fillfactor | max_rows_per_page} = x]
        [on segment_name ]
         | references [[ database .] owner .] ref_table
             [( ref_column )]
         | check ( search_condition )}]}...

| [constraint constraint_name ]
    {{unique | primary key}
        [clustered | nonclustered]
         ( column_name  [{, column_name }...])
        [with {fillfactor | max_rows_per_page} = x]
        [on segment_name ]
    | foreign key ( column_name  [{,
column_name }...])
        references [[ database .] owner .] ref_table
           [( ref_column  [{, ref_column }...])]
    | check ( search_condition )}

[{, { next_column  | next_constraint }}...])

[with max_rows_per_page = x][on segment_name ]

The create table statement does the following:

• It defines each column in the table.

• It provides the column name and datatype and specifies how
each column handles null values.

• It specifies which column, if any, has the IDENTITY property.



Transact-SQL User’s Guide 7-13

Adaptive Server Enterprise Release 11.5.x Creating Tables

• It defines column-level integrity constraints and table-level
integrity constraints. Each table definition can have multiple
constraints per column and per table.

For example, the create table statement for the titles table in the pubs2
database is:

create table titles
(title_id tid,
title varchar(80) not null,
type char(12),
pub_id char(4) null,
price money null,
advance money null,
royalty int null,
total_sales int null,
notes varchar(200) null,
pubdate datetime,
contract bit not null)

The following sections describe components of table definition:
system-supplied datatypes, user-defined datatypes, null types, and
IDENTITY columns. Defining integrity constraints for a table is
described after those sections.

➤ Note
The on segment_name extension to create table allows you to place your table

on an existing segment. segment_name points to a specific database device

or a collection of database devices. Before creating a table on a segment,

see a System Administrator or the Database Owner for a list of segments

that you can use. Certain segments may be allocated to specific tables or

indexes for performance reasons, or for other considerations.

Allowing Null Values

For each column, you can specify whether to allow null values. A
null value is not the same as “zero” or “blank.” NULL means no
entry has been made, and usually implies “value unknown” or
“value not applicable.” It indicates that the user did not make any
entry, for whatever reason. For example, a null entry in the price
column of the titles table does not mean that the book is being given
away free, but that the price is not known or has not yet been set.



7-14 Creating Databases and Tables

Creating Tables Adaptive Server Enterprise Release 11.5.x

If the user does not make an entry in a column defined with the
keyword null, Adaptive Server supplies the value “NULL”. A column
defined with the keyword null also accepts an explicit entry of NULL
from the user, no matter what datatype it is. However, be careful
when you enter null values in character columns. If you put the word
“null” inside single or double quotes, Adaptive Server interprets the
entry as a character string rather than as the value NULL.

If you omit null or not null in the create table statement, Adaptive Server
uses the null mode defined for the database (by default, NOT
NULL). For compatibility with SQL standards, use the sp_dboption
system procedure to set the allow nulls by default option to true.

For a column defined as NOT NULL, Adaptive Server insists on an
entry. If there is no entry for a NOT NULL column, Adaptive Server
displays an error message.

Defining columns as NULL provides a placeholder for data you may
not yet know. For example, in the titles table, price, advance, royalty,
and total_sales are set up to allow NULL.

However, title_id and title are not, because the lack of an entry in
these columns would be meaningless and confusing. A price without
a title would make no sense, whereas a title without a price would
simply mean that the price had not been set yet or was not available.

In the create table statement, use the keywords not null when the
information in the column is critical to the meaning of the other
columns.

Constraints and Rules Used with Null Values

It is not possible to define a column to allow null values, and then to
override this definition with a constraint or a rule that prohibits null
values. For example, if a column definition specifies NULL and a rule
specifies this:

@val in (1,2,3)

an implicit or explicit NULL does not violate the rule. The column
definition overrides the rule, even a rule that specifies:

@val is not null

See “Defining Integrity Constraints for Tables” on page 7-27 for more
information on constraints. Rules are covered in detail in Chapter 12,
“Defining Defaults and Rules for Data.”



Transact-SQL User’s Guide 7-15

Adaptive Server Enterprise Release 11.5.x Creating Tables

Defaults and Null Values

You can use defaults, that is, values that are supplied automatically
when no entry is made, with both NULL and NOT NULL columns.
A default counts as an entry. However, you cannot designate a NULL
default for a NOT NULL column. You can specify null values as
defaults using the default constraint of the create table statement or
using the create default statement. The default constraint is described
later in this chapter; create default is described in Chapter 12, “Defining
Defaults and Rules for Data.”

If you specify NOT NULL when you create a column and do not
create a default for it, an error message occurs when a user fails to
make an entry in that column during an insert. In addition, the user
cannot insert or update such a column with NULL as a value.

The following table illustrates the interaction between a column’s
default and its null type when a user specifies no column value or
explicitly enters a NULL value. The three possible results are a null
value for the column, the default value for the column, or an error
message.

Nulls Require Variable Length Datatypes

Only columns with variable-length datatypes can store null values.
When you create a NULL column with a fixed-length datatype,
Adaptive Server converts it to the corresponding variable-length
datatype. Adaptive Server does not inform you of the type change.

The following chart lists the fixed-length datatypes and the variable-
length datatypes to which Adaptive Server converts them. Certain

Table 7-1: Column definition and null defaults

Column Definition User Entry Result

Null and
default defined

Enters no value

Enters NULL value

Default used

NULL used

Null defined, no default
defined

Enters no value

Enters NULL value

NULL used

NULL used

Not null, default defined Enters no value

Enters NULL value

Default used

NULL used

Not null, no default
defined

Enters no value

Enters NULL value

Error

Error



7-16 Creating Databases and Tables

Creating Tables Adaptive Server Enterprise Release 11.5.x

variable-length datatypes, such as moneyn, are reserved types; you
cannot use them to create columns, variables, or parameters.

Data entered into char, nchar, and binary columns follows the rules for
variable-length columns, rather than being padded with spaces or
zeros to the full length of the column specification.

text and image Columns

text and image columns created with insert and NULL are not
initialized and contain no value. They do not use storage space and
cannot be accessed with readtext or writetext.

When a NULL value is written in a text or image column with update,
the column is initialized, a valid text pointer to the column is inserted
into the table, and a 2K data page is allocated to the column. Once the
column is initialized, it can be accessed by readtext and writetext. See
“text and image Datatypes” in the Adaptive Server Reference Manual
for more information.

Using IDENTITY Columns

IDENTITY columns contain system-generated values that uniquely
identify each row within a table. Use IDENTITY columns to store
sequential numbers, such as invoice or employee numbers, that
Adaptive Server generates automatically. The value of the IDENTITY
column uniquely identifies each row in a table.

Table 7-2: Conversion of fixed-length to variable-length datatypes

Original Fixed-Length Datatype Converted To

char varchar

nchar nvarchar

binary varbinary

datetime datetimn

float floatn

int, smallint, and tinyint intn

decimal decimaln

numeric numericn

money and smallmoney moneyn



Transact-SQL User’s Guide 7-17

Adaptive Server Enterprise Release 11.5.x Creating Tables

Each table can include only one IDENTITY column. You can define
an IDENTITY column when you create a table with a create table or
select into statement or add it later with an alter table statement.

By definition, IDENTITY columns cannot be updated and do not
allow nulls. Each time you insert a row into a table, Adaptive Server
supplies a unique, sequential value for its IDENTITY column,
beginning with the value 1. Manual insertions, deletions, transaction
rollbacks, the identity grab size configuration parameter, and server
shutdowns and failures can create gaps in IDENTITY column values.

You define an IDENTITY column by specifying the keyword identity,
instead of null or not null, in the create table statement. IDENTITY
columns must have a datatype of numeric and scale of 0. Define the
IDENTITY column with any desired precision, from 1 to 38 digits, in
a new table:

create table table_name
    ( column_name  numeric( precision ,0) identity)

The maximum possible column value is 10 PRECISION - 1. Following is
an example of a table whose IDENTITY column allows a maximum
value of 10 5- 1, or 9999:

create table sales_daily
    (sale_id numeric(5,0) identity,
    stor_id char(4) not null)

You can create automatic IDENTITY columns by using the auto identity
database option and the size of auto identity configuration parameter. To
include IDENTITY columns in nonunique indexes, use the identity in
nonunique index database option.

Creating IDENTITY Columns with User-Defined Datatypes

You can also use user-defined datatypes to create IDENTITY
columns. The user-defined datatype must have an underlying type
of numeric and a scale of 0.

If the user-defined datatype was created with the IDENTITY
property, you do not have to repeat the identity keyword when
creating the column. Here is an example of a user-defined datatype
with the IDENTITY property:

sp_addtype ident, "numeric(5)", "identity"

This example shows an IDENTITY column based on the ident
datatype:



7-18 Creating Databases and Tables

Creating Tables Adaptive Server Enterprise Release 11.5.x

create table sales_monthly
    (sale_id ident, stor_id char(4) not null)

If the user-defined type was created as not null, you must specify the
identity keyword in the create table statement. You cannot create an
IDENTITY column from a user-defined datatype that allows null
values.

Generating Column Values

The first time you insert a row into a table, Adaptive Server assigns
the IDENTITY column a value of 1. For instance, using the previous
example, suppose you add a row to the sales_monthly table:

insert into sales_monthly
values ("7896")

“7896” specifies the stor_id column value for Fricative Bookshop. Its
row is automatically assigned 1 for the ident column.

Each new row gets a column value one higher than the last.
Transaction rollbacks, deletion of rows, the identity grab size
configuration parameter, and the manual insertion of data into the
IDENTITY column can cause gaps in column values.

Server failures can also create gaps in IDENTITY column values. The
size of these gaps, as a percentage of maximum table size, depends
on the setting of the identity burning set factor configuration parameter.
This parameter is set during installation and can be reset by the
System Administrator.

Referencing IDENTITY Columns

When you create a table column that references an IDENTITY
column, as with any referenced column, make sure it has the same
datatype definition as the IDENTITY column. For example, in the
pubs3 database, the sales table is defined using the ord_num column as
an IDENTITY column:

create table sales
(stor_id char(4) not null
     references stores(stor_id),
ord_num numeric(6,0) identity,
date datetime not null,
unique nonclustered (ord_num))

Notice that the ord_num IDENTITY column is defined as a unique
constraint, which it needs for referencing the ord_num column in
salesdetail. salesdetail is defined as follows:



Transact-SQL User’s Guide 7-19

Adaptive Server Enterprise Release 11.5.x Creating Tables

create table salesdetail
(stor_id char(4) not null
     references storesz(stor_id),
ord_num numeric(6,0)
     references salesz(ord_num),
title_id tid not null
     references titles(title_id),
qty smallint not null,
discount float not null)

An easy way to insert a row into salesdetail after inserting a row into
sales is to use the @@identity global variable to insert the IDENTITY
column value into salesdetail. The @@identity global variable stores
the most recently generated IDENTITY column value. For example:

begin tran
insert sales values ("6380", "04/25/97")
insert salesdetail values ("6380", @@identity, "TC3218", 50, 50)
commit tran

This example is in a transaction because both inserts depend on each
other in order to succeed. For example, if the sales insert fails, the
value of @@identity will be different, resulting in an erroneous row
being inserted into salesdetail. Because the two inserts are in a
transaction, if one fails, the entire transaction is rejected.

For more information on IDENTITY columns, see “Retrieving
IDENTITY Column Values with @@identity” on page 8-19. For
information on transactions, see Chapter 18, “Transactions:
Maintaining Data Consistency and Recovery.”

Referring to IDENTITY Columns with syb_identity

Once you have defined an IDENTITY column, you do not have to
remember the actual column name. You can use the syb_identity
keyword, qualified by the table name where necessary, in a select,
insert, update, or delete statement on the table.

For example, the following query selects the row for which sale_id
equals 1:

select * from sales_monthly
    where syb_identity = 1



7-20 Creating Databases and Tables

Creating Tables Adaptive Server Enterprise Release 11.5.x

Creating “Hidden” IDENTITY Columns Automatically

System Administrators can use the auto identity database option to
automatically include a 10-digit IDENTITY column in new tables. To
turn this feature on in a database, use:

sp_dboption database_name , "auto identity", "true"

Each time a user creates a new table without specifying either a
primary key, a unique constraint, or an IDENTITY column, Adaptive
Server automatically defines an IDENTITY column. The IDENTITY
column is not visible when you use select * to retrieve all columns
from the table. You must explicitly include the column name,
SYB_IDENTITY_COL (all uppercase letters), in the select list. If
Component Integration Services is enabled, the automatic
IDENTITY column for proxy tables is called
OMNI_IDENTITY_COL.

To set the precision of the automatic IDENTITY column, use the size
of auto identity configuration parameter. For example, the following
command sets the precision of the IDENTITY column to 15:

sp_configure "size of auto identity", 15

Gaps in IDENTITY Column Values

IDENTITY column values can range from a low of 1 to a high of 10
COLUMN PRECISION - 1. Adaptive Server divides the set of possible values
into blocks of consecutive numbers, and makes one block of numbers
at a time available in memory.

When assigning an IDENTITY column value, Adaptive Server
draws the next available value from the block. Once all the values in
the block have been used, Adaptive Server makes the next block
available. Choosing the next IDENTITY value from a block of
available numbers improves server performance, but can lead to
gaps in column values.

Gaps Due to Server Failures and Shutdowns

Whenever Adaptive Server fails, it discards any remaining values in
the current block. This also happens when you terminate the server
using the shutdown with nowait command. When you restart Adaptive
Server, it makes the next block of numbers available for the
IDENTITY column.



Transact-SQL User’s Guide 7-21

Adaptive Server Enterprise Release 11.5.x Creating Tables

For example, a 2-digit IDENTITY column can have values ranging
from 1 to 99. Adaptive Server might make values 1–5 available for
the first set of insertions:

• The first time you insert a row, Adaptive Server assigns the
IDENTITY column a value of 1.

• The second time you insert a row, Adaptive Server assigns a
value of 2.

• If Adaptive Server fails at this point, it discards the remaining
numbers in the block (3, 4, and 5).

• When you restart Adaptive Server, it makes a new block of
numbers (6–10) available:

• The next time you insert a row, Adaptive Server assigns the
IDENTITY column a value of 6 and skips values 3, 4, and 5.

You use the identity burning set factor configuration variable to control
the size of gaps resulting from server failure. This variable, which is
set during installation, determines what percentage of the potential
column values is contained in each block of available numbers. The
default value of 5000 releases .05 percent (.0005) of potential column
values for use at a time.

System Administrators can reset the identity burning set factor variable
using the sp_configure system procedure:

sp_configure "identity burning set factor", value

Determine what percentage of available numbers you want available
at the same time. This number should be high enough for good
performance, but not so high that gaps are unacceptably large.
Express the number in decimal form, and then multiply it by

Potential IDENTITY Column Values

1–5 Available

6–99 Not yet available

Potential IDENTITY Column Values

1–5 No longer available

6–10 Available

11–99 Not yet available



7-22 Creating Databases and Tables

Creating Tables Adaptive Server Enterprise Release 11.5.x

10,000,000 (10 raised to the power 7) to get the correct value for
sp_configure.

For example, to release 15 percent (.15) of the potential IDENTITY
column values at one time, you specify a value of .15 times 107 (or
1,500,000) in sp_configure:

sp_configure "identity burning set factor", 1500000

Gaps Due to Insertions, Deletions, Identity Grab Size, and Rollbacks

Manual insertions into the IDENTITY column, deletion of rows, the
identity grab size configuration parameter, and transaction rollbacks can
create gaps in IDENTITY column values. These gaps are not affected
by the setting of the identity burning set factor configuration parameter.

For example, assume that you have an IDENTITY column with the
following values:

select syb_identity from stores_cal

 id_col
 -------
      1
      2
      3
      4

5

(5 rows affected)

You can delete all rows for which the IDENTITY column falls
between 2 and 4, leaving gaps in the column values:

delete stores_cal
where syb_identity between 2 and 4

select syb_identity from stores_cal

 id_col
 ------
      1

5

(2 rows affected)

After setting identity_insert on for the table, the table owner, Database
Owner, or System Administrator can manually insert any legal value
greater than 5. For example, inserting a value of 55 would create a
large gap in IDENTITY column values:



Transact-SQL User’s Guide 7-23

Adaptive Server Enterprise Release 11.5.x Creating Tables

insert stores_cal
(syb_identity, stor_id, stor_name)
values (55, "5025", "Good Reads")

select syb_identity from stores_cal

id_col
 -------
      1
      5
     55

(3 rows affected)

If identity_insert is then set to off, Adaptive Server assigns an IDENTITY
column value of 55 + 1, or 56, for the next insertion. If the transaction
that contains the insert statement is rolled back, Adaptive Server
discards the value 56 and uses a value of 57 for the next insertion.

If Table Inserts Reach the IDENTITY Column’s Maximum Value

The maximum number of rows you can insert into a table depends
on the precision set for the IDENTITY column. If a table reaches that
limit, you can either re-create the table with a larger precision or, if
the table’s IDENTITY column is not used for referential integrity, use
the bcp utility to remove the gaps. See “Reaching the IDENTITY
Column’s Maximum Value” on page 8-21 for more information.

Using Temporary Tables

Temporary tables are created in the tempdb database, not the current
database. To create a temporary table, you must have create table
permission in tempdb. create table permission defaults to the Database
Owner.

To make a table temporary, use the pound sign (#) or “tempdb..”
before the table name in the create table statement.

There are two kinds of temporary tables:

• Tables that can be shared among Adaptive Server sessions

You create a shareable temporary table by specifying tempdb as
part of the table name in the create table statement. For example,
the following statement creates a temporary table that can be
shared among Adaptive Server sessions:

create table tempdb..authors
(au_id char(11))



7-24 Creating Databases and Tables

Creating Tables Adaptive Server Enterprise Release 11.5.x

Adaptive Server does not change the names of temporary tables
created this way. The table exists until the current session ends
or until its owner drops it using drop table.

• Tables that are accessible only by the current Adaptive Server
session or procedure

You create a non-shareable temporary table by specifying a
pound sign (#) before the table name in the create table statement.
For example:

create table #authors
(au_id char (11))

The table exists until the current session or procedure ends, or
until its owner drops it using drop table.

If you do not use the pound sign or “tempdb..” before the table name,
and you are not currently using tempdb, the table is created as a
permanent table. A permanent table stays in the database until it is
explicitly dropped by its owner.

Here is a statement that creates a non-shareable temporary table:

create table #myjobs
(task char(30),
start datetime,
stop datetime,
notes varchar(200))

You can use this table to keep a list of today’s chores and errands,
along with a record of when you start and finish and any comments
you may have. This table and its data will vanish at the end of the
current work session. Temporary tables are not recoverable.

You can associate rules, defaults and indexes with temporary tables,
but you cannot create views on temporary tables or associate triggers
with them. You can use a user-defined datatype when creating a
temporary table only if that datatype is in tempdb..systypes.

There are two ways to add a user-defined datatype, or any other
object, to tempdb. To add an object for the current session only,
execute sp_addtype while using tempdb. To add a user-defined
datatype permanently, execute sp_addtype in model, and then restart
Adaptive Server so that model is copied to tempdb.

Ensuring That the Temporary Table Name Is Unique

To ensure that a temporary table name is unique for the current
session, Adaptive Server:



Transact-SQL User’s Guide 7-25

Adaptive Server Enterprise Release 11.5.x Creating Tables

• Truncates the table name to 13 characters, including the pound
sign (#)

• Pads shorter names to 13 characters, using underscores (_)

• Appends a 17-digit numeric suffix that is unique for an Adaptive
Server session

The following example shows a table created as #temptable and
stored as #temptable___00000050010721973:

use pubs2
go
create table #temptable (task char(30))
go
use tempdb
go
select name from sysobjects where name like
    "#temptable%"
go

name
------------------------------
#temptable___00000050010721973

(1 row affected)

Manipulating Temporary Tables in Stored Procedures

Stored procedures can reference temporary tables that are created
during the current session. Within a stored procedure, you cannot
create a temporary table, drop it, and then create a new temporary
table with the same name.

Temporary Tables with Names Beginning with “#”

Temporary tables with names beginning with “#” that are created
within stored procedures disappear when the procedure exits. A
single procedure can:

• Create a temporary table

• Insert data into the table

• Run queries on the table

• Call other procedures that reference the table

Since the temporary table must exist in order to create procedures
that reference it, here are the steps to follow:



7-26 Creating Databases and Tables

Creating Tables Adaptive Server Enterprise Release 11.5.x

1. Use a create table statement to create the temporary table.

2. Create the procedures that access the temporary table, but do not
create the procedure that creates the table.

3. Drop the temporary table.

4. Create the procedure that creates the table and calls the
procedures created in step 2.

Tables with Names Beginning with tempdb..

You can create temporary tables without the # prefix, using create table
tempdb..tablename from inside a stored procedure. These tables do not
disappear when the procedure completes, so they can be referenced
by independent procedures. Follow the steps above to create these
tables.

◆ WARNING!
Create temporary tables with the “tempdb..” prefix from inside a
stored procedure only  if you intend to share the table among users
and sessions. Stored procedures that create and drop a temporary
table should use the # prefix to avoid inadvertent sharing.

General Rules on Temporary Tables

Temporary tables with names that begin with # are subject to the
following restrictions:

• You cannot create views on these tables.

• You cannot associate triggers with these tables.

• You cannot tell which session or procedure has created these
tables.

These restrictions do not apply to shareable, temporary tables
created in tempdb.

Rules that apply to both types of temporary tables are as follows:

• You can associate rules, defaults and indexes with temporary
tables. Indexes created on a temporary table disappear when the
temporary table disappears.

• System procedures such as sp_help work on temporary tables only
if you invoke them from tempdb.



Transact-SQL User’s Guide 7-27

Adaptive Server Enterprise Release 11.5.x Defining Integrity Constraints for Tables

• User-defined datatypes cannot be used in temporary tables
unless the datatypes exist in tempdb; that is, unless they have been
explicitly created in tempdb since the last time Adaptive Server
was restarted.

• You do not have to set the select into/bulkcopy option on to select into
a temporary table.

Creating Tables in Different Databases

As the create table syntax shows, you can create a table in a database
other than the current one by qualifying the table name with the
name of the other database. However, you must be an authorized
user of the database in which you are creating the table, and you
must have create table permission in it.

If you are using pubs2 or pubs3 and there is another database called
newpubs, you can create a table called newtab in newpubs like this:

create table newpubs..newtab (col1 int)

You cannot create other database objects—views, rules, defaults,
stored procedures, and triggers—in a database other than the current
one.

Defining Integrity Constraints for Tables

Transact-SQL provides two methods for maintaining data integrity
in a database:

• Defining rules, defaults, indexes, and triggers

• Defining create table integrity constraints

Specifying the Appropriate Method for Data Integrity

Choosing one method over the other depends on your requirements.
Integrity constraints offer the advantages of defining integrity
controls in one step during the table creation process (as defined by
the SQL standards) and of simplifying the process to create those
integrity controls. However, integrity constraints are more limited in
scope and less comprehensive than defaults, rules, indexes, and
triggers.

For example, triggers provide more complex handling of referential
integrity than those declared in create table. Also, the integrity



7-28 Creating Databases and Tables

Defining Integrity Constraints for Tables Adaptive Server Enterprise Release 11.5.x

constraints defined by a create table are specific for that table. Unlike
rules or defaults, you cannot bind them to other tables, and you can
only drop or change them using alter table. Constraints cannot contain
subqueries or aggregate functions, even on the same table.

The two methods are not mutually exclusive. You can use integrity
constraints along with defaults, rules, indexes, and triggers. This
gives you the flexibility to choose the best method for your
application. This section describes the create table integrity
constraints. Defaults, rules, indexes, and triggers are described in
later chapters.

You can create the following types of constraints:

• unique and primary key constraints require that no two rows in a
table have the same values in the specified columns. In addition,
a primary key constraint requires that there not be a null value in
any row of the column.

• Referential integrity (references) constraints require that data
being inserted in specific columns already have matching data in
the specified table and columns. Use the system procedure
sp_helpconstraint to find a table’s referenced tables.

• check constraints limit the values of data inserted into columns.

You can also enforce data integrity by restricting the use of null
values in a column (the null or not null keywords) and by providing
default values for columns (the default clause). See “Allowing Null
Values” on page 7-13 for information about the null and not null
keywords.

For information about any constraints defined for a table, see “Using
sp_helpconstraint to Find a Table’s Constraint Information” on page
7-58.

◆ WARNING!
Do not define constraints for system tables or alter their definition.

Specifying Table-Level or Column-Level Constraints

You can declare integrity constraints at the table or column level. The
difference is syntactic. You place column-level constraints after the
column name and datatype, but before the delimiting comma. You
enter table-level constraints as separate comma-delimited clauses.



Transact-SQL User’s Guide 7-29

Adaptive Server Enterprise Release 11.5.x Defining Integrity Constraints for Tables

Adaptive Server treats table-level and column-level constraints the
same way; both ways are equally efficient.

However, you must declare constraints that operate on more than
one column as table-level constraints. For example, the following
create table statement has a check constraint that operates on two
columns, pub_id and pub_name:

create table my_publishers
(pub_id      char(4),
pub_name     varchar(40),
constraint my_chk_constraint
    check (pub_id in ("1389", "0736", "0877")
        or pub_name not like "Bad News Books"))

You can declare constraints that operate on just one column as
column-level constraints, but it is not required. For example, if the
above check constraint just uses one column (pub_id), you can place
the constraint on that column:

create table my_publishers
(pub_id     char(4) constraint my_chk_constraint
        check (pub_id in ("1389", "0736", "0877")),
pub_name     varchar(40))

In either case, the constraint keyword and accompanying
constraint_name are optional. The check constraint is described under
“Specifying Check Constraints” on page 7-36.

Creating Error Messages for Constraints

You can create error messages and bind them to constraints by
creating messages with sp_addmessage and binding them to
constraints with sp_bindmsg.

For example:

sp_addmessage 25001,
     "The publisher ID must be 1389, 0736, or 0877"

sp_bindmsg my_chk_constraint, 25001

insert my_publishers values
     ("0000", "Reject This Publisher")

Msg 25001, Level 16, State 1:
Server ‘snipe’, Line 1:
The publisher ID must be 1389, 0736, or 0877
Command has been aborted.



7-30 Creating Databases and Tables

Defining Integrity Constraints for Tables Adaptive Server Enterprise Release 11.5.x

To change the message for a constraint, just bind a new message. The
new message replaces the old message.

Unbind messages from constraints with sp_unbindmsg and drop user-
defined messages with sp_dropmessage.

For example:

sp_unbindmsg my_chk_constraint

sp_dropmessage 25001

To change the text of a message but keep the same error number,
unbind it, drop it with sp_dropmessage, add it again with
sp_addmessage, and bind it with sp_bindmsg.

After Creating a Check Constraint

After you create a check constraint, the source text describing the
check constraint is stored in the text column of the syscomments
system table. In previous releases of SQL Server, users often deleted
the source text from syscomments, in order to save disk space and
remove confidential information from this public area. Do not
remove this information from syscomments; doing so can cause
problems for future upgrades of Adaptive Server. Instead, you can
encrypt the text in syscomments by using the sp_hidetext system
procedure, described in the Adaptive Server Reference Manual. For
more information, see “Compiled Objects” on page 1-3.

Specifying Default Column Values

Before defining any column-level integrity constraints, you can
specify a default value for the column with the default clause. The
default clause assigns a default value to a column in one step, as part
of the create table statement. When a user does not enter a value for the
column, Adaptive Server inserts the default value.

You can use the following values with the default clause:

• constant_expression – specifies a constant expression to use as a
default value for the column. It cannot include the name of any
columns or other database objects, but you can include built-in
functions that do not reference database objects. This default
value must be compatible with the datatype of the column.

• user – specifies that Adaptive Server insert the user name as the
default. The datatype of the column must be either char(30) or
varchar(30) to use this default.



Transact-SQL User’s Guide 7-31

Adaptive Server Enterprise Release 11.5.x Defining Integrity Constraints for Tables

• null – specifies that Adaptive Server insert the null value as the
default. You cannot define this default for columns that do not
allow null values (using the not null keyword).

For example, this create table statement defines two column defaults:

create table my_titles
(title_id        char(6),
title            varchar(80),
price            money       default null,
total_sales      int         default 0)

You can include only one default clause per column in a table.

Using the default clause to assign defaults is simpler than the two-step
Transact-SQL method. In Transact-SQL, you can use create default to
declare the default value and then bind it to the column with
sp_bindefault.

Specifying Unique and Primary Key Constraints

You can declare unique or primary key constraints to ensure that no two
rows in a table have the same values in the specified columns. Both
constraints create unique indexes to enforce this data integrity.
However, primary key constraints are more restrictive than unique
constraints. Columns with primary key constraints cannot contain a
NULL value. You normally use a table’s primary key constraint in
conjunction with referential integrity constraints defined on other
tables.

The definition of unique constraints in the SQL standards specifies
that the column definition shall not allow null values. By default,
Adaptive Server defines the column as not allowing null values (if
you have not changed this using sp_dboption) when you omit null or not
null keywords in the column definition. In Transact-SQL, you can
define the column to allow null values along with the unique
constraint, since the unique index used to enforce the constraint
allows you to insert a null value.



7-32 Creating Databases and Tables

Defining Integrity Constraints for Tables Adaptive Server Enterprise Release 11.5.x

➤ Note
Do not confuse the unique and primary key integrity constraints with the

information defined by the sp_primarykey, sp_foreignkey, and sp_commonkey
system procedures. The unique and primary key constraints actually create

indexes to define unique or primary key attributes of table columns.

sp_primarykey, sp_foreignkey, and sp_commonkey define the logical

relationship of keys (in the syskeys table) for table columns, which you

enforce by creating indexes and triggers.

unique constraints create unique nonclustered indexes by default;
primary key constraints create unique clustered indexes by default. You
can declare either clustered or nonclustered indexes with either type
of constraint.

For example, the following create table statement uses a table-level
unique constraint to ensure that no two rows have the same values in
the stor_id and ord_num columns:

create table my_sales
(stor_id     char(4),
ord_num      varchar(20),
date         datetime,
unique clustered (stor_id, ord_num))

There can be only one clustered index on a table, so you can specify
only one unique clustered or primary key clustered constraint.

You can use the unique and primary key constraints to create unique
indexes (including the with fillfactor, with max_rows_per_page, and on
segment_name options) when enforcing data integrity. However,
indexes provide additional capabilities. For information about
indexes and their options, including the differences between
clustered and nonclustered indexes, see Chapter 11, “Creating
Indexes on Tables.”

Specifying Referential Integrity Constraints

Referential integrity refers to the methods used to manage the
relationships between tables. When you create a table, you can define
constraints to ensure that the data inserted into a particular column
has matching values in another table.

There are three types of references you can define in a table:
references to another table, references from another table, and self-
references, that is, references within the same table.



Transact-SQL User’s Guide 7-33

Adaptive Server Enterprise Release 11.5.x Defining Integrity Constraints for Tables

The following two tables from the pubs3 database illustrate how
declarative referential integrity works. The first table, stores, is a
“referenced” table:

create table stores
(stor_id     char(4) notnull,
stor_name    varchar(40) null,
stor_address varchar(40) null,
city         varchar(20) null,
state        char(2) null,
country      varchar(12) null,
postalcode   char(10) null,
payterms     varchar(12) null,
unique nonclustered (stor_id))

The second table, store_employees, is a “referencing table” because it
contains a reference to the stores table. It also contains a self-
reference:

create table store_employees
(stor_id     char(4) null
       references stores(stor_id),
emp_id       id not null,
mgr_id       id null
       references store_employees(emp_id),
emp_lname    varchar(40) not null,
emp_fname    varchar(20) not null,
phone        char(12) null,
address      varchar(40) null,
city         varchar(20) null,
state        char(2) null,
country      varchar(12) null,
postalcode   varchar(10) null,
unique nonclustered (emp_id))

The references defined in the store_employees table enforce the
following restrictions:

• Any store specified in the store_employees table must be included
in the stores table. The references constraint enforces this by saying
that any value inserted into the stor_id column in store_employees
must already exist in the stor_id column in my_stores.

• All managers must have employee identification numbers. The
references constraint enforces this by saying that any value
inserted into the mgr_id column must already exist in the emp_id
column.



7-34 Creating Databases and Tables

Defining Integrity Constraints for Tables Adaptive Server Enterprise Release 11.5.x

Table-Level or Column-Level Referential Integrity Constraints

You can define referential integrity constraints at the column level or
the table level. The referential integrity constraints in the preceding
examples were defined at the column level, using the references
keyword in the create table statement.

When you define table-level referential integrity constraints, include
the foreign key clause and a list of one or more column names. The
foreign key clause specifies that the listed columns in the current table
are foreign keys whose target keys are the columns listed the
following references clause. For example:

constraint sales_detail_constr
     foreign key (stor_id, ord_num)
     references my_salesdetail(stor_id, ord_num)

The foreign key syntax is permitted only for table-level constraints, and
not for column-level constraints. For more information, see
“Specifying Table-Level or Column-Level Constraints” on page 7-28.

After defining referential integrity constraints at the column level or
the table level, you can use the sp_primarykey, sp_foreignkey and
sp_commonkey system procedures to define the keys in the syskeys
system table.

Maximum Number of References Allowed for a Table

The maximum number of references allowed for a table is 192. You
can check a table’s references by using the system procedure
sp_helpconstraint, described under “Using sp_helpconstraint to Find a
Table’s Constraint Information” on page 7-58.

Using create schema for Cross-Referencing Constraints

If you attempt to create a table that references a table that does not
yet exist, Adaptive Server does not create the table, but returns an
error message saying that the referenced table does not exist. In order
to create two or more tables that reference each other, use the create
schema command.

A schema is a collection of objects owned by a particular user, and
the permissions associated with those objects. If any of the
statements within a create schema statement fail, the entire command
is rolled back as a unit, and none of the commands take effect.



Transact-SQL User’s Guide 7-35

Adaptive Server Enterprise Release 11.5.x Defining Integrity Constraints for Tables

The create schema syntax is:

create schema authorization authorization_name
create_oject_statement
    [ create_object_statement ... ]
[ permission_statement  ... ]

For example:

create schema authorization dbo
    create table list1
        (col_a char(10) primary key,

  col_b char(10) null
        references list2(col_A))

    create table list2
        (col_A char(10) primary key,

      col_B char(10) null
        references list1(col_a))

General Rules for Creating Referential Integrity Constraints

When you define referential integrity constraints in a table, follow
these rules:

• Make sure you have references permission on the referenced table
to use referential integrity constraints. For information about
permissions, see the Security Features User’s Guide.

• Make sure that the referenced columns are constrained by a
unique index in the referenced table. You can create that unique
index using either the unique or primary key constraint or the create
index statement. For example, the referenced column in the stores
table was defined as follows:

stor_id char(4) primary key

• Make sure the columns used in the references definition have
matching datatypes. For example, the stor_id columns in both
my_stores and store_employees were created using the char(4)
datatype. The mgr_id and emp_id columns in store_employees were
created with the id datatype.

• You can omit column names in the references clause only if the
columns in the referenced table are designated as a primary key
through a primary key constraint.

• You cannot delete rows or update column values from a
referenced table that match values in a referencing table. Delete
or update from the referencing table first, and then delete it from
the referenced table.



7-36 Creating Databases and Tables

Defining Integrity Constraints for Tables Adaptive Server Enterprise Release 11.5.x

Similarly, you cannot use truncate table on a referenced table.
Truncate the referencing table first, and then truncate the
referenced table.

• You must drop the referencing table before you drop the
referenced table; otherwise, a constraint violation occurs.

• Use the system procedure sp_helpconstraint to find a table’s
referenced tables.

Referential integrity constraints provide a simpler way to enforce
data integrity when compared to creating triggers. However, triggers
provide additional capabilities to enforce referential integrity
between tables. For more information, see Chapter 16, “Triggers:
Enforcing Referential Integrity.”

Specifying Check Constraints

You can declare a check constraint to limit the values users insert into
a column in a table. Check constraints are useful for applications that
check a limited, specific range of values. A check constraint specifies
a search_condition that any value must pass before it is inserted into
the table. A search_condition can include:

• A list of constant expressions introduced with in

• A range of constant expressions introduced with between

• A set of conditions introduced with like, which may contain
wildcard characters

An expression can include arithmetic operations and Transact-SQL
built-in functions. The search_condition cannot contain subqueries, a
set function specification, or a target specification.

For example, this create table statement ensures that only certain
values can be entered for the pub_id column:

create table my_new_publishers
(pub_id      char(4)
        check (pub_id in ("1389", "0736", "0877",
             "1622", "1756")
        or pub_id like "99[0-9][0-9]"),
pub_name     varchar(40),
city         varchar(20),
state        char(2))

Column-level check constraints can reference only the column on
which the constraint is defined; they cannot reference other columns
in the table. Table-level check constraints can reference any columns



Transact-SQL User’s Guide 7-37

Adaptive Server Enterprise Release 11.5.x Defining Integrity Constraints for Tables

in the table. create table allows multiple check constraints in a column
definition.

Because check constraints do not override the column definitions,
you cannot use a check constraint to prohibit null values if the
column definition permits them. If you declare a check constraint on
a column that allows null values, you can insert NULL into the
column, implicitly or explicitly, even though NULL is not included in
the search_condition. For example, suppose you define the following
check constraint on a table column that allows null values:

check (pub_id in ("1389", "0736", "0877", "1622",
"1756"))

You can still insert NULL into that column. The column definition
overrides the check constraint because the following expression
always evaluates to true:

col_name != null

Tips on Designing Applications That Use Referential Integrity

Following are performance tips to be aware of when you design
applications that use referential integrity features:

• Do not create unnecessary referential constraints. The more
referential constraints a table has, the slower a statement
requiring referential integrity runs on that table.

• Use as few self-referencing constraints on a table as possible.

• Use the check constraint rather than the references constraint for
applications that check a limited, specific range of values. Using
the check constraint eliminates the need for Adaptive Server to
scan other tables to complete the query, since there are no
references. Therefore, queries on such tables run faster than on
tables using references.

For example, the following table uses a check constraint to limit
the authors to California:



7-38 Creating Databases and Tables

Defining Integrity Constraints for Tables Adaptive Server Enterprise Release 11.5.x

create table cal_authors
(au_id id not null,
au_lname varchar(40) not null,
au_fname varchar(20) not null,
phone char(12) null,
address varchar(40) null,
city varchar(20) null,
state char(2) null
     check(state = "CA"),
country varchar(12) null,
postalcode char(10) null)

• Bind commonly scanned foreign key indexes to their own caches,
to optimize performance. Unique indexes are created
automatically on columns declared as primary keys. These
indexes are usually selected to scan the referenced table when
their corresponding foreign keys are updated or inserted.

• Keep multi-row updates of candidate keys at a minimum.

• Put referential integrity queries into procedures that use
constraint checks. Constraint checks are compiled into the
execution plan; when a referential constraint is altered, the
procedure that has the constraint compiled is automatically
recompiled when that procedure is executed.

• If you cannot embed referential integrity queries in a procedure
and you have to run referential integrity queries frequently in an
ad hoc batch, bind the system catalog sysreferences to its own
cache. Doing so improves performance when Adaptive Server
needs to recompile referential integrity queries.

• After you create a table that has referential constraints, test it by
using set showplan, noexec on before running a query using the table.
The showplan output indicates the number of auxiliary scan
descriptors required to run the query; scan descriptors manage
the scan of a table whenever queries are run on it. If the number
of auxiliary scan descriptors is very high, redesign the table so
that it uses fewer scan descriptors, or increase the value of the
number of auxiliary scan descriptors configuration parameter.



Transact-SQL User’s Guide 7-39

Adaptive Server Enterprise Release 11.5.x How to Design and Create a Table

How to Design and Create a Table

This section gives an example of a create table statement you can use to
create a practice table of your own. If you do not have create table
permission, see a System Administrator or the owner of the database
in which you are working.

Creating a table usually implies creating indexes, defaults, and rules
to go with it. Custom datatypes, triggers, and views are frequently
involved, too.

Of course, you can create a table, input some data, and work with it
for a while before you create indexes, defaults, rules, triggers, or
views. This gives you a chance to see what kind of transactions are
most common and what kind of data is frequently entered.

On the other hand, it is often most efficient to design a table and all
the components that go with it at once. Here is an outline of the steps
you go through. You might find it easiest to sketch your plans on
paper before you actually create a table and its accompanying
objects.

First, plan the table’s design:

1. Decide what columns you need in the table, and the datatype,
length, precision, and scale, for each.

2. Create any new user-defined datatypes before you define the
table in which they are to be used.

3. Decide which column, if any, should be the IDENTITY column.

4. Decide which columns should and which should not accept null
values.

5. Decide what integrity constraints or column defaults, if any, you
need to add to the columns in the table. This includes deciding
when to use column constraints and defaults instead of defaults,
rules, indexes, and triggers to enforce data integrity.

6. Decide whether you need defaults and rules, and if so, where
and what kind. Consider the relationship between the NULL
and NOT NULL status of a column and defaults and rules.

7. Decide what kind of indexes you need and where. Indexes are
discussed in Chapter 11, “Creating Indexes on Tables.”



7-40 Creating Databases and Tables

How to Design and Create a Table Adaptive Server Enterprise Release 11.5.x

Now, create the table and its associated objects:

1. Create the table and its indexes with the create table and create index
commands.

2. Create the defaults and rules you need with the create default and
create rule commands. These commands are discussed in Chapter
12, “Defining Defaults and Rules for Data.”

3. Bind any defaults and rules you need with the system
procedures sp_bindefault and sp_bindrule. If there were any defaults
or rules on a user-defined datatype that you used in a create table
statement, they are automatically in force. These system
procedures are discussed in Chapter 14, “Using Stored
Procedures.”

4. Create triggers with the create trigger command. Triggers are
discussed in Chapter 16, “Triggers: Enforcing Referential
Integrity.”

5. Create views with the create view command. Views are discussed
in Chapter 9, “Views: Limiting Access to Data.”

Make a Design Sketch

The table called friends_etc is used in this chapter and subsequent
chapters to show how to create indexes, defaults, rules, triggers, and
so forth. It can hold names, addresses, telephone numbers, and
personal information about your friends. It does not define any
column defaults or integrity constraints, so as to not conflict with
those objects.

If another user has already created the friends_etc table, check with a
System Administrator or the Database Owner if you plan to follow
the examples and create the objects that go with friends_etc. The
owner of friends_etc will need to drop its indexes, defaults, rules, and
triggers so that there will be no conflict when you create these
objects.

Table 7-3 shows the proposed structure of the friends_etc table and the
indexes, defaults, and rules that go with each column.

Table 7-3: Sample table design

Column Datatype Null? Index Default Rule

pname nm NOT NULL nmind(composite)

sname nm NOT NULL nmind(composite)



Transact-SQL User’s Guide 7-41

Adaptive Server Enterprise Release 11.5.x How to Design and Create a Table

Create the User-Defined Datatypes

The first two columns are for the personal (first) name and surname.
They are defined as nm datatype. Before you create the table, you
need to create the datatype. The same is true of the p# datatype for
the phone column.

The nm datatype allows for a variable-length character entry with a
maximum of 30 bytes. The p# datatype allows for a char datatype
with a fixed-length size of 10 bytes.

Enter the user datatype definitions for nm and p# like this:

execute sp_addtype nm, "varchar(30)"
execute sp_addtype p#, "char(10)"

Choose the Columns That Accept Null Values

Except for columns that are assigned user-defined datatypes, each
column has an explicit NULL or NOT NULL entry. Remember that
you do not need to specify NOT NULL in the table definition,
because it is the default. This table design specifies NOT NULL
explicitly, for readability.

The NOT NULL default means that an entry is required for that
column, for example, for the two name columns in this table. The
other data is meaningless without the names. In addition, the sex

address varchar(30) NULL

city varchar(30) NOT NULL citydflt

state char(2) NOT NULL statedflt

zip char(5) NULL zipind zipdflt ziprule

phone p# NULL phonerule

age tinyint NULL agerule

bday datetime NOT NULL bdflt

sex bit NOT NULL sexdflt

debt money NOT NULL sexdflt

notes varchar(255) NULL

Table 7-3: Sample table design (continued)

Column Datatype Null? Index Default Rule



7-42 Creating Databases and Tables

Creating New Tables from Query Results: select into Adaptive Server Enterprise Release 11.5.x

column must be NOT NULL because you cannot use NULL with bit
columns.

If a column is designated NULL and a default is bound to it, the
default value, rather than NULL, is entered when no other value is
given on input. If a column is designated NULL and a rule is bound
to it that does not specify NULL, the column definition overrides the
rule when no value is entered for the column. Columns can have
both defaults and rules. The relationship between these two is
discussed in Chapter 12, “Defining Defaults and Rules for Data.”

Define the Table

Now, write the create table statement:

create table friends_etc
(pname       nm             not null,
sname        nm             not null,
address      varchar(30)    null,
city         varchar(30)    not null,
state        char(2)        not null,
postalcode   char(5)        null,
phone        p#             null,
age          tinyint        null,
bday         datetime       not null,
sex          bit            not null,
debt         money          not null,
notes        varchar(255)   null)

You have now defined columns for the personal name and surname,
address, city, state, postal code, telephone number, age, birthday, sex,
debt information, and notes. Later, you will create the rules, defaults,
indexes, triggers, and views for this table.

Creating New Tables from Query Results: select into

The select into command lets you create a new table based on the
columns specified in the select statement’s select list and the rows
chosen in the where clause. The into clause is useful for creating test
tables, new tables as copies of existing tables, and for making several
smaller tables out of one large table. You can use select into on a
permanent table only if the select into/bulkcopy/pllsort database option is
set to on. A System Administrator can turn on this option using the
sp_dboption system procedure. Use the sp_helpdb system procedure to
see if this option is on.



Transact-SQL User’s Guide 7-43

Adaptive Server Enterprise Release 11.5.x Creating New Tables from Query Results: select into

Here is what the sp_helpdb system procedure and its results look like
when the select into/bulkcopy/pllsort database option is set to on:

sp_helpdb pubs2

name       db_size owner   dbid    created      status
---------  ------- ------  -----   -----------  ------------
pubs       2 MB    sa      5       Jun 5 1997  select into
                                                /bulkcopy/pllsort

(1 row affected)

device              size         usage
-----------------   ---------    --------------
master              2 MB         data and log

(1 row affected)

The report from sp_helpdb indicates whether the option is set to on or
off. Only the System Administrator or the Database Owner can set
the database options.

If the select into/bulkcopy/pllsort database option is on, you can use the
select into clause to build a new permanent table without using a create
table statement. You can select into a temporary table, even if the select
into/bulkcopy/pllsort option is not on.

➤ Note
Because select into is a minimally logged operation, use dump database to

back up your database following a select into. You cannot dump the

transaction log following a minimally logged operation.

Unlike a view that displays a portion of a table, a table created with
select into is a separate, independent entity. See Chapter 9, “Views:
Limiting Access to Data,” for more information.

The new table is based on the columns you specify in the select list,
the tables you name in the from clause, and the rows you choose in the
where clause. The name of the new table must be unique in the
database and must conform to the rules for identifiers.

A select statement with an into clause allows you to define a table and
put data into it, based on existing definitions and data, without going
through the usual data definition process.

The following example shows a select into statement and its results. A
table called newtable is created, using two of the columns in the four-
column table publishers. Because this statement includes no where



7-44 Creating Databases and Tables

Creating New Tables from Query Results: select into Adaptive Server Enterprise Release 11.5.x

clause, data from all the rows (but only two of the columns) of
publishers is copied into newtable.

select pub_id, pub_name
into newtable
from publishers

(3 rows affected)

Adaptive Server’s message “3 rows affected” refers to the three rows
inserted into newtable. Here’s what newtable looks like:

select *
from newtable

pub_id  pub_name
------  ------------------------------------
0736    New Age Books
0877    Binnet & Hardley
1389    Algodata Infosystems

(3 rows affected)

The new table contains the results of the select statement. It becomes
part of the database, just like its parent table.

select into lets you create a skeleton table with no data by putting a
false condition in the where clause. For example:

select *
into newtable2
from publishers
where 1=2

(0 rows affected)

select *
from newtable2

pub_id    pub_name          city      state
------    --------------    --------  -----

(0 rows affected)

No rows are inserted into the new table, because 1 never equals 2.

You can also use select into with aggregate functions to create tables
with summary data:

select type, "Total_amount" = sum(advance)
into #whatspent
from titles
group by type



Transact-SQL User’s Guide 7-45

Adaptive Server Enterprise Release 11.5.x Creating New Tables from Query Results: select into

(6 rows affected)

select * from #whatspent

 type         Total_amount
 ------------ ------------------------
 UNDECIDED                        NULL
 business                    25,125.00
 mod_cook                    15,000.00
 popular_comp                15,000.00
 psychology                  21,275.00
 trad_cook                   19,000.00

(6 rows affected)

Always supply a name for any column in the select into result table
that results from an aggregate function or any other expression.
Examples are:

• Arithmetic aggregates, for example, amount * 2

• Concatenation, for example, lname + fname

• Functions, for example, lower(lname)

Following is an example of using concatenation:

select au_id,
    "Full_Name" = au_fname + ' ' + au_lname
into #g_authortemp
from authors
where au_lname like "G%"

(3 rows affected)

select * from #g_authortemp

 au_id       Full_Name
 ----------- -------------------------
 213-46-8915 Marjorie Green
 472-27-2349 Burt Gringlesby
 527-72-3246 Morningstar Greene

(3 rows affected)

Because functions allow null values, any column in the table that
results from a function other than convert() or isnull() will allow null
values.



7-46 Creating Databases and Tables

Creating New Tables from Query Results: select into Adaptive Server Enterprise Release 11.5.x

Checking for Errors

select into is a two-step operation. The first step creates the new table
and the second step inserts the specified rows into the table.

Because select into operations are not logged, they cannot be issued
within user-defined transactions and cannot be rolled back.

If a select into statement fails after creating a new table, Adaptive
Server does not automatically drop the table or deallocate its first
data page. This means that any rows inserted on the first page before
the error occurred remain on the page. Check the value of the
@@error global variable after a select into statement to be sure that no
error occurred.

If an error occurs from a select into operation, use the drop table
statement to remove the new table, and then reissue the select into
statement.

Using select into with IDENTITY Columns

The following section describes special rules for using the select into
command with tables containing IDENTITY columns.

Selecting an IDENTITY Column into a New Table

To select an existing IDENTITY column into a new table, include the
column name (or the syb_identity keyword) in the select statement’s
column_list:

select column_list
into table_name
from table_name

The following example creates a new table, stores_cal_pay30, based
on columns from the stores_cal table:

select record_id, stor_id, stor_name
into stores_cal_pay30
from stores_cal
where payterms = "Net 30"

The new column inherits the IDENTITY property, unless any of the
following conditions is true:

• The IDENTITY column is selected more than once.

• The IDENTITY column is selected as part of an expression.



Transact-SQL User’s Guide 7-47

Adaptive Server Enterprise Release 11.5.x Creating New Tables from Query Results: select into

• The select statement contains a group by clause, aggregate function,
union operator, or join.

Selecting the IDENTITY Column More Than Once

A table cannot have more than one IDENTITY column. If an
IDENTITY column is selected more than once, it is defined as NOT
NULL in the new table. It does not inherit the IDENTITY property.

In the following example, the record_id column, which is selected
once by name and once by the syb_identity keyword, is defined as NOT
NULL in stores_cal_pay60:

select syb_identity, record_id, stor_id, stor_name
into stores_cal_pay60
from stores_cal
where payterms = "Net 60"

Adding a New IDENTITY Column with select into

To define a new IDENTITY column in a select into statement, add the
column definition before the into clause. The definition includes the
column’s precision but not its scale:

select column_list
identity_column_name  = identity( precision )
into table_name
from table_name

The following example creates a new table, new_discounts, from the
discounts table and adds a new IDENTITY column, id_col:

select *, id_col=identity(5)
into new_discounts
from discounts

No table can have more than one IDENTITY column. If the
column_list includes an existing IDENTITY column, and you add a
description of a new IDENTITY column, the select into statement fails.

Defining a Column Whose Value Must Be Computed

IDENTITY column values are generated by Adaptive Server. New
columns that are based on IDENTITY columns, but whose values
must be computed rather than generated, cannot inherit the
IDENTITY property.



7-48 Creating Databases and Tables

Altering Existing Tables Adaptive Server Enterprise Release 11.5.x

If a table’s select statement includes an IDENTITY column as part of
an expression, the resulting column value must be computed. The
new column is created as NULL if any column in the expression
allows a NULL value. Otherwise, it is NOT NULL.

In the following example, the new_id column, which is computed by
adding 1000 to the value of record_id, is created NOT NULL:

select new_id = record_id + 1000, stor_name
into new_stores
from stores_cal

Column values are also computed if the select statement contains a
group by clause or aggregate function. If the IDENTITY column is the
argument of the aggregate function, the resulting column is created
NULL. Otherwise, it is NOT NULL.

IDENTITY Columns Selected into Tables with Unions or Joins

The value of the IDENTITY column uniquely identifies each row in a
table. However, if a table’s select statement contains a union or join,
individual rows can appear multiple times in the result set.

An IDENTITY column that is selected into a table with a union or
join does not retain the IDENTITY property. If the table contains the
union of the IDENTITY column and a NULL column, the new
column is defined as NULL. Otherwise, it is NOT NULL.

For more information about IDENTITY columns, see “Using
IDENTITY Columns” on page 7-16 and “Updating IDENTITY
Columns” on page 8-29. See also select in the Adaptive Server Reference
Manual.

Altering Existing Tables

If you change your mind about a table’s structure after you have
used it for a while and then decide you need to modify the way the
table is put together, you have these options:

• You can add columns and constraints, drop constraints, or
change column default values using the alter table command.

• You can change the name of a table, a column, or any other
database object with the system procedure sp_rename.



Transact-SQL User’s Guide 7-49

Adaptive Server Enterprise Release 11.5.x Altering Existing Tables

Changing Table Structures: alter table

The alter table command allows you to make these changes to existing
tables:

• Add columns (except bit datatype columns)

• Add constraints

• Drop constraints

• Replace the defaults defined for its columns

Here is the alter table syntax:

alter table [ database .[ owner ].] table_name
{add column_name datatype
    [default { constant_expression | user | null}]
    {[{identity | null}]
    | [[constraint constraint_name ]
        {{unique | primary key}
            [clustered | nonclustered]
        [with {fillfactor | max_rows_per_page} = x]
        [on segment_name ]
        | references [[ database .] owner .] ref_table
            [( ref_column )]
        | check ( search_condition )}]}...
    {[, next_column ]}...

| add {[constraint constraint_name ]
    {unique | primary key}
        [clustered | nonclustered]
        ( column_name  [{, column_name }...])
        [with {fillfactor | max_rows_per_page} = x]
        [on segment_name ]
| foreign key ( column_name  [{,  column_name }...])
        references [[ database .] owner .] ref_table
           [( ref_column  [{, ref_column }...])]
    | check ( search_condition ) ... }

| drop constraint constraint_name

| replace column_name
    default { constant_expression | user | null}}

For example, you can add a column to the friends_etc table as follows:

alter table friends_etc
    add country varchar(20) null



7-50 Creating Databases and Tables

Altering Existing Tables Adaptive Server Enterprise Release 11.5.x

alter table Restrictions

• The number of columns in a table cannot exceed 250, whether
they are added with an alter table statement or defined in the
original create table statement.

• All other columns that you add must allow null values. This is
because when the new column is added to the existing rows,
there must be some value for it. Specify null when adding any
column other than the IDENTITY column.

• Do not alter the definition of system tables.

• If stored procedures using select * reference a table that has been
altered, the procedure, even if you use the with recompile option,
will not pick up any new columns you may have added to the
table. You must drop the procedure and re-create it.

Adding an IDENTITY Column to a Table

A table can have only one IDENTITY column with a datatype of
numeric and a scale of zero. To add an IDENTITY column to a table,
specify the identity keyword in the alter table statement:

alter table table_name  add column_name
    numeric( precision ,0) identity

The following example adds an IDENTITY column, record_id, to the
stores table:

alter table stores
    add record_id numeric(5,0) identity

When you add an IDENTITY column to a table, Adaptive Server
assigns a unique sequential value, beginning with the value 1, to
each row. If the table contains a large number of rows, this process
can be time-consuming. If the number of rows exceeds the maximum
value allowed for the column (in this case, 105 - 1, or 99,999), the alter
table statement fails.

Adding Integrity Constraints to a Table

Later, you can add one or more integrity constraints on the new
column (or any other column) of friends_etc:

alter table friends_etc
    add constraint no_old_country
        check (country not in ("GDR", "E. Germany",
                     "East Germany"))



Transact-SQL User’s Guide 7-51

Adaptive Server Enterprise Release 11.5.x Altering Existing Tables

However, adding a constraint does not affect the data already in the
table.

Dropping Constraints and Key Definitions

When you no longer need a constraint, you can drop it:

alter table friends_etc
    drop constraint no_old_country

To drop a constraint, you must specify the constraint_name. To find
detailed information about a table’s constraints, use the system
procedure sp_helpconstraint, described under “Using
sp_helpconstraint to Find a Table’s Constraint Information” on page
7-58.

To drop a key that you defined with sp_primarykey, sp_foreignkey or
sp_commonkey, use sp_dropkey. Its syntax is:

sp_dropkey keytype , tabname  [,  deptabname ]

How you specify keytype depends on how it is defined:

• If keytype is foreign or common, deptabname specifies the name of the
second table in the relationship. (tabname specifies the first table
in the relationship.)

• If keytype is primary, this parameter is not needed, since primary keys
have no dependent tables.

• If keytype is foreign, this is the name of the primary key table.

• If keytype is common, give the two table names in the order in
which they appear with sp_helpkey.

Changing Default Values in an Existing Table

alter table also allows you to change the default value defined for a
column (or add a column default if one does not exist). For example:

alter table friends_etc
    replace country default "USA"

For information about column defaults and integrity constraints, see
“Defining Integrity Constraints for Tables” on page 7-27.



7-52 Creating Databases and Tables

Altering Existing Tables Adaptive Server Enterprise Release 11.5.x

Renaming Tables and Other Objects

To rename tables and other database objects—views, indexes, rules,
defaults, procedures, and triggers—use the system procedure
sp_rename. You must be the owner of an object in order to rename it.

To rename the database, use the system procedure sp_renamedb. For
more information, see sp_renamedb in the Adaptive Server Reference
Manual.

The syntax of sp_rename is:

sp_rename objname , newname

For example, to change the name of friends_etc to infotable, type this:

sp_rename friends_etc, infotable

You can use sp_rename to rename other objects as well: columns,
defaults, rules, procedures, views, triggers, check constraints,
referential integrity constraints, and user datatypes. If you are
renaming a column, use this syntax:

sp_rename " table.column ", newcolumnname

You must leave off the table name prefix from the new column name,
or the new name will not be accepted. To change the name of an
index, use this syntax:

sp_rename " table.index ", newindexname

Do not include the table name in the new name.

To change the name of the user datatype tid to t_id, use this syntax:

exec sp_rename tid, "t_id"

You cannot change the name of system objects or system datatypes.
You can change the names only of the objects you own. However, the
Database Owner can change the name of any user’s objects. Also, the
object whose name you are changing must be in the current database.

Renaming Dependent Objects

Procedures, triggers, and views that depend on an object whose
name has been changed work fine until they are recompiled.
Recompiling takes place for many reasons and without notification
to the user; for example, when a user loads a database, drops and re-
creates a table, or drops an index.

The procedure, trigger, or view no longer works after it is recompiled
by Adaptive Server. You must change the text of the affected
procedure, trigger, or view to reflect the new object name. Also, the



Transact-SQL User’s Guide 7-53

Adaptive Server Enterprise Release 11.5.x Dropping Tables

old object name appears in query results until the procedure, trigger,
or view has been changed and recompiled. The safest course is to
change the definitions of any dependent objects when you execute
sp_rename. You can get a list of dependent objects using the sp_depends
system procedure.

You can use the defncopy utility program to copy the definitions of
procedures, triggers, rules, defaults, and views into an operating
system file. Edit this file to correct the object names, and use defncopy
to copy the definition back into Adaptive Server. For more
information on defncopy, refer to the Utility Programs manual for your
platform.

Dropping Tables

Use the drop table command to remove a table from a database. Its
syntax is:

drop table [[ database .] owner .] table_name
  [, [[ database .] owner .] table_name ]...

When you issue this command, Adaptive Server removes the
specified tables from the database, together with their contents and
all indexes and privileges associated with them. Rules or defaults
bound to the table are no longer bound, but are otherwise not
affected.

You must be the owner of a table in order to drop it. However, no one
can drop a table while it is in use, that is, being read or written to by
a user or a front-end program. The drop table command cannot be used
on any of the system tables, either in the master database or in a user
database.

As the syntax indicates, you can drop a table in another database as
long as you are the table owner.

If you delete all the rows in a table or use the truncate table command on
it, the table still exists until you drop it.

drop table and truncate table permission cannot be transferred to other
users.



7-54 Creating Databases and Tables

Assigning Permissions to Users Adaptive Server Enterprise Release 11.5.x

Assigning Permissions to Users

The grant and revoke commands control the Adaptive Server
command and object protection system. You can give various kinds
of permissions to users, groups, and roles with the grant command
and rescind them with the revoke command. grant and revoke give users
permission to:

• Create databases

• Create objects in a database

• Access tables, views, and columns

• Execute stored procedures

Some commands can be used at any time by any user, with no
permissions required. Others can be used only by users of certain
status (for example, a System Administrator) and are not
transferable.

The ability to assign permissions for the commands that can be
granted and revoked is determined by each user’s status (as System
Administrator, Database Owner, or database object owner) and by
whether a particular user has been granted a permission with the
option to grant that permission to other users.

The owner of a database does not automatically receive permissions
on objects that are owned by other users. But a Database Owner or
System Administrator can acquire any permission by using the
setuser command to assume the identity of the object owner and then
writing the appropriate grant or revoke statement.

You can assign two kinds of permissions with grant and revoke: object
access permissions and object creation permissions.

Object access permissions regulate the use of certain commands that
access certain database objects. For example, you must be granted
permission to use the select command on the authors table. Object
access permissions are granted and revoked by the owner of the
object.

The following statement grants Mary and Joe the object access
permission to insert into and delete from the titles table:

grant insert, delete
on titles
to mary, joe



Transact-SQL User’s Guide 7-55

Adaptive Server Enterprise Release 11.5.x Getting Information About Databases and Tables

Object creation permissions regulate the use of commands that create
objects. These permissions can be granted only by a System
Administrator or Database Owner.

The following statement revokes object creation permission to create
tables and rules in the current database from Mary:

revoke create table, create rule
from mary

For complete information about using grant and revoke for object
access permissions and object creation permissions, see the Security
Features User’s Guide.

A System Security Officer can also use roles to simplify the task of
granting and revoking access permissions.

For example, instead of having object owners grant privileges on
each object individually to each employee, the System Security
Officer can create roles, request object owners to grant privileges to
each role, and grant these user-defined roles to individual
employees, based on the functions they perform in the organization.
The System Security Officer can also revoke user-defined roles
granted to the employee.

For complete information about user-defined roles, see Chapter 4,
“Administering Roles,” in the Security Administration Guide.

Getting Information About Databases and Tables

Adaptive Server provides several system procedures and built-in
functions to get information about databases, tables, and other
database objects. This section describes some of them.

For complete information about system procedures, see the Adaptive
Server Reference Manual.

Getting Help on Databases

The system procedure sp_helpdb can report information about a
specified database or about all databases in Adaptive Server. It
reports the name, size, and usage of each fragment you have
assigned to the database with create or alter database. Its syntax is:

sp_helpdb [ dbname]

Here is how you would get a report on pubs2:

sp_helpdb pubs2



7-56 Creating Databases and Tables

Getting Information About Databases and Tables Adaptive Server Enterprise Release 11.5.x

name    db_size   owner  dbid created           status
-----   -------   ------ ---- ---------------   -------------
pubs2   2 MB      sa     4    Jun 18 1997       no options set

(1 row affected)

device             size         usage
-----------------  -----------  --------------
pubsdev            2 MB         data + log

(1 row affected)

The sp_databases catalog stored procedure lists all the databases on a
server. For example:

sp_databases

database_name     database_size  remarks
----------------- -------------  ------------
master                     5120  NULL
model                      2048  NULL
pubs2                      2048  NULL
pubs3                      2048  NULL
sybsecurity                5120  NULL
sybsystemprocs            30720  NULL
tempdb                     2048  NULL

(7 rows affected, return status = 0)

To find out who owns a database, use the sp_helpuser system
procedure:

sp_helpuser dbo

Users_name    ID_in_db Group_name   Login_name
------------- -------- ------------ ------------
dbo                  1 public       sa

(return status = 0)

The system functions db_id() and db_name() identify the current
database. For example:

select db_name(), db_id()

------------------------------ ------
master                              1



Transact-SQL User’s Guide 7-57

Adaptive Server Enterprise Release 11.5.x Getting Information About Databases and Tables

Getting Help on Database Objects

Adaptive Server provides system procedures, catalog stored
procedures and built-in functions that return helpful information
about database objects such as tables, columns, and constraints.

Using sp_help on Database Objects

The system procedure sp_help can report information about a
specified database object (that is, any object listed in sysobjects), a
specified datatype (listed in systypes), or all objects and datatypes in
the current database.

The syntax is:

sp_help [ objname ]

Here is the output for the publishers table:

Name                          Owner       Type
-------------------------- ----------- ----------
publisher dbo user table

(1 row affected)

Data_located_on_segment            When_created
------------------------------     --------------------
default Jul 7 1997 1:43PM

Column_name Type     Length   Prec  Scale
----------- -------  ------   ----- -----
pub_id      char          4    NULL  NULL
pub_name    varchar      40    NULL  NULL
city        varchar      20    NULL  NULL
state       char          2    NULL  NULL

Nulls       Default_name   Rule_name     Identity
-----       -------------  ---------     --------
    0       NULL pub_idrule           0
    1       NULL           NULL                 0
    1       NULL           NULL                 0
    1       NULL           NULL     0

index_name index_description  index_keys index_max_rows_per_page
---------- ------------------  ---------- -----------------------
pubind clustered, unique   pub_id     0
           located on default

(1 row affected)



7-58 Creating Databases and Tables

Getting Information About Databases and Tables Adaptive Server Enterprise Release 11.5.x

keytype  object      related_object  related_keys
-------  ----------  --------------  ------------
primary  publishers  -- none --      pub_id, *, *, *, *, *
foreign  titles      publishers      pub_id, *, *, *, *, *

(1 row affected)

Object is not partitioned.

(return status = 0)

If you execute sp_help without supplying an object name, the
resulting report shows a brief listing of each object in sysobjects,
giving its name, owner, and object type. Also shown is each user-
defined datatype in systypes and its name, storage type, length,
whether null values are allowed, and the names of any defaults or
rules bound to it. The report also notes whether any primary or
foreign key columns have been defined for a table or view with the
system procedures sp_primarykey or sp_foreignkey.

sp_help lists any indexes on a table, including indexes created by
defining unique or primary key constraints of the create table or alter
table statements. However, it does not describe any information about
the integrity constraints defined for a table. You must use
sp_helpconstraint for information about any integrity constraints.

Using sp_helpconstraint to Find a Table’s Constraint Information

The system procedure sp_helpconstraint reports information about the
declarative referential integrity constraints specified for a table. This
information includes the constraint name and the definition of the
default, unique or primary key constraint, referential constraint, or
check constraint. sp_helpconstraint also reports the number of
references associated with the specified tables.

Its syntax is:

sp_helpconstraint [ objname ] [, detail]

where objname is the name of the table being queried. Used by itself,
sp_helpconstraint displays the number of references associated with
each table in the current database. When specified with a table name,
sp_helpconstraint reports the name, definition, and number of integrity
constraints associated with the table. If you specify the detail option
with this system procedure, it also returns information about the
constraint’s user or error messages.

For example, suppose you run sp_helpconstraint on the store_employees
table in pubs3. The store_employees table was created as follows:



Transact-SQL User’s Guide 7-59

Adaptive Server Enterprise Release 11.5.x Getting Information About Databases and Tables

create table store_employees
(stor_id     char(4) null
       references stores(stor_id),
emp_id       id not null,
mgr_id       id null
       references store_employees(emp_id),
emp_lname    varchar(40) not null,
emp_fname    varchar(20) not null,
phone        char(12) null,
address      varchar(40) null,
city         varchar(20) null,
state        char(2) null,
country      varchar(12) null,
postalcode   varchar(10) null,
unique nonclustered (emp_id))

You can execute sp_helpconstraint to report its constraints:

name                         defn
---------------------------  --------------------------------
store_empl_stor_i_272004000  store_employees FOREIGN KEY
                             (stor_id) REFERENCES stores(stor_id)
store_empl_mgr_id_288004057  store_employees FOREIGN KEY

 (mgr_id) SELF REFERENCES
                             store_employees(emp_id)
store_empl_2560039432        UNIQUE INDEX( emp_id) :

NONCLUSTERED, FOREIGN REFERENCE

(3 rows affected)

Total Number of Referential Constraints: 2
Details:
-- Number of references made by this table: 2
-- Number of references to this table: 1
-- Number of self references to this table: 1

Formula for Calculation:
Total Number of Referential Constraints
= Number of references made by this table
+ Number of references made to this table
- Number of self references within this table

A quick way to find the largest number of referential constraints
associated with any table in the current database is to run
sp_helpconstraint without specifying a table name, for example:

sp_helpconstraint



7-60 Creating Databases and Tables

Getting Information About Databases and Tables Adaptive Server Enterprise Release 11.5.x

id          name                     Num_referential_constraints
----------- ------------------------ ---------------------------
   80003316 titles                                             4
   16003088 authors                                            3
  176003658 stores                                             3
  256003943 salesdetail                                        3
  208003772 sales                                              2
  336004228 titleauthor                                        2
  896006223 store_employees                                    2
   48003202 publishers                                         1
  128003487 roysched                                           1
  400004456 discounts                                          1
  448004627 au_pix                                             1
  496004798 blurbs                                             1

(11 rows affected)

In this report, the titles table has the largest number of referential
constraints in the pubs3 database.

Finding Out How Much Space a Table Uses

You can find out how much space a table uses with the system
procedure sp_spaceused. Its syntax is:

sp_spaceused [ objname ]

This system procedure also works for indexes, which are described
in Chapter 11, “Creating Indexes on Tables.” It computes and
displays the number of rows and data pages used by a table or a
clustered or nonclustered index.

Here is how to get a report on the space used by the titles table:

sp_spaceused titles

name    rows   reserved  data  index_size  unused
------- ----- --------- ----- ---------  ------
titles  18 48 KB 6 KB  4 KB 38 KB

(0 rows affected)

If no object name is given as a parameter, sp_spaceused displays a
summary of space used by all database objects.



Transact-SQL User’s Guide 7-61

Adaptive Server Enterprise Release 11.5.x Getting Information About Databases and Tables

Listing Tables, Columns, and Datatypes

Catalog stored procedures retrieve information from the system
tables in tabular form. Also, you can supply wildcard characters for
some parameters.

Listing Tables

The catalog stored procedure sp_tables lists all user tables in a
database when used in the following format:

sp_tables @table_type = "'TABLE'"

Listing Columns and Datatypes

The catalog stored procedure sp_columns returns the datatype of any
or all columns in one or more tables in a database. You can use
wildcard characters to get information about more than one table or
column.

For example, the following command returns information about all
columns that includes the string “id” in all the tables with “sales” in
their name:

sp_columns "%sales%", null, null, "%id%"

table_qualifier table_owner
       table_name     column_name
       data_type type_name  precision  length  scale radix  nullable
       remarks

ss_data_type colid
--------------- -----------
      ---------- -----------
      ---------  --------- ---------  ------  ----- -----  --------
      -------

------------ -----
pubs2              dbo
       sales           stor_id
       1          char       4           4       NULL  NULL    0
NULL

47            1
pubs2            dbo
       salesdetail     stor_id
       1         char        4           4       NULL  NULL    0
NULL



7-62 Creating Databases and Tables

Getting Information About Databases and Tables Adaptive Server Enterprise Release 11.5.x

4             1
pubs          dbo
        salesdetail     title_id
        12      varchar      6           6       NULL  NULL 0

NULL

39            3

(3 rows affected, return status = 0)

Finding an Object Name and ID

The system functions object_id() and object_name() identify the ID and
name of an object. For example:

select object_id("titles")

----------
  208003772

Object names and IDs are stored in the sysobjects system table.



Transact-SQL User’s Guide 8-1

8 Adding, Changing, and Deleting
Data 8.

After you create a database, tables, and indexes, you can put data
into the tables and work with it—adding, changing, and deleting
data as necessary.

This chapter discusses:

• What Choices Are Available to Modify Data?   8-1

• Datatype Entry Rules   8-4

• Adding New Data   8-12

• Changing Existing Data   8-25

• Changing text and image Data   8-30

• Deleting Data   8-31

• Deleting All Rows from a Table   8-34

What Choices Are Available to Modify Data?

The commands you use to add, change, or delete data are called data
modification statements. These commands are as follows:

• insert – adds new rows to a table.

• update – changes existing rows in a table.

• writetext – adds or changes text and image data without writing
lengthy changes in the system’s transaction log.

• delete – removes specific rows from a table.

• truncate table – removes all rows from a table.

For information about these commands, see the Adaptive Server
Reference Manual.

Another method of adding data to a table is to transfer it from a file
using the bulk copy utility program bcp. See the Utility Programs
manual for your platform for more information.

You can modify data, using the insert, update, or delete statements, in
only one table per statement. A Transact-SQL enhancement to these
commands is that the modifications you make can be based on data
in other tables, even those in other databases.



8-2 Adding, Changing, and Deleting Data

What Choices Are Available to Modify Data? Adaptive Server Enterprise Release 11.5.x

The data modification commands work on views as well as on tables,
with some restrictions. See Chapter 9, “Views: Limiting Access to
Data,” for details.

Permissions

Data modification commands are not necessarily available to
everyone. The Database Owner and the owners of database objects
use the grant and revoke commands to decide who has access to which
data modification functions.

Permissions or privileges can be granted to individual users, groups,
or the public for any combination of the data modification
commands. Permissions are discussed in the Security Features User’s
Guide.

Referential Integrity

insert, update, delete, writetext, and truncate table allow you to change data
without changing related data in other tables, disparities may
develop.

For example, if you discover that the au_id entry for Sylvia Panteley
is incorrect and you change it in the authors table, you must also
change it in the titleauthor table and in any other table in the database
that has a column containing that value. If you do not, you will not
be able to find information such as the names of Ms. Panteley’s
books, because it will be impossible to make joins on her au_id
column.

Keeping data modifications consistent throughout all tables in a
database is called referential integrity. One way to deal with it is to
define referential integrity constraints for the table. Another way is
to create special procedures called triggers that take effect when you
give insert, update, and delete commands for particular tables or
columns (the truncate table command is not caught by triggers or
referential integrity constraints). Triggers are discussed in Chapter
16, “Triggers: Enforcing Referential Integrity”; integrity constraints
are discussed in Chapter 7, “Creating Databases and Tables.”

To delete data from referential integrity tables, change the referenced
tables first and then the referencing table.



Transact-SQL User’s Guide 8-3

Adaptive Server Enterprise Release 11.5.x What Choices Are Available to Modify Data?

Transactions

A copy of the old and new state of each row affected by each data
modification statement is written to the transaction log. (An
exception is writetext, when the select/into bulkcopy database option is set
to false.) This means that if you begin a transaction by issuing the begin
transaction command, realize you have made a mistake, and roll the
transaction back, the database can be restored to its previous
condition.

➤ Note
Changes made on a remote Adaptive Server by means of a remote

procedure call (RPC) cannot be rolled back.

The default mode of operation for writetext does not log the
transactions. This avoids filling up the transaction log with the
extremely long blocks of data that text and image fields may contain.
The with log option to the writetext command must be used to log
changes made with this command.

A more complete discussion of transactions appears in Chapter 18,
“Transactions: Maintaining Data Consistency and Recovery.”

Using the Sample Databases

If you follow the examples in this chapter on your own screen, you
will probably want to start with a clean copy of the pubs2 or pubs3
database and return it to that state when you are finished. See a
System Administrator for help in getting a clean copy of the pubs2 or
pubs3 database.

If you are starting with a clean pubs2 or pubs3 database, you can
prevent any changes you make from becoming permanent by
enclosing all the statements you enter inside a transaction, and then
aborting the transaction when you are finished with this chapter. For
example, start the transaction by typing:

begin tran modify_pubs2

This transaction is named modify_pubs2. You can cancel the
transaction at any time and return the database to the condition it
was in before you began the transaction by typing:

rollback tran modify_pubs2



8-4 Adding, Changing, and Deleting Data

Datatype Entry Rules Adaptive Server Enterprise Release 11.5.x

Datatype Entry Rules

Several of the Adaptive Server-supplied datatypes have special rules
for entering and searching for data. For more information on
datatypes, see Chapter 7, “Creating Databases and Tables.”

char, nchar, varchar, nvarchar, and text

Remember that all character, text, and datetime data must be enclosed
in single or double quotes when you first enter it and when you are
searching for it. Use single quotes if the quoted_identifier option of the
set command is set on. If you use double quotes, Adaptive Server
treats the text as an identifier.

If you enter strings that are longer than the specified length of a char,
nchar, varchar, or nvarchar column, the entry is truncated. Set the
string_rtruncation option on to receive a warning message when this
occurs.

There are two ways to specify literal quotes within a character entry:

• Use two quotes. For example, if you begin a character entry with
a single quote and you want to include a single quote as part of
the entry, use two single quotes: ’I don’ ‘t understand.’ For double
quotes:  “He said, ““It’s not really confusing.”””

• Enclose the quoted material in the opposite kind of quotation
mark. In other words, surround an entry containing a double
quote with single quotes, or vice versa. For example:  ’George
said, “There must be a better way.” ’

To enter a character string that is longer than the width of your
screen, enter a backslash (\) before going to the next line.

Use the like keyword and wildcard characters described in Chapter 2,
“Queries: Selecting Data from a Table,” to search for character, text,
and datetime data.

See “text and image Datatypes” in the Adaptive Server Reference
Manual for details on inserting text data. See “Character Datatypes”
in the Adaptive Server Reference Manual for information about trailing
blanks in character data.

datetime and smalldatetime

Display and entry formats for datetime data provide a wide range of
date output formats, and recognize a variety of input formats. The



Transact-SQL User’s Guide 8-5

Adaptive Server Enterprise Release 11.5.x Datatype Entry Rules

display and entry formats are controlled separately. The default
display format provides output that looks like “Apr 15 1997
10:23PM”. The convert command provides options to display seconds
and milliseconds and to display the date with other date-part
orderings. See Chapter 10, “Using the Built-In Functions in Queries,”
for more information on displaying date values.

Adaptive Server recognizes a wide variety of data entry formats for
dates. Case is always ignored, and spaces can occur anywhere
between date parts. When you enter datetime and smalldatetime
values, always enclose them in single or double quotes. (Use single
quotes if the quoted_identifier option is on; if you use double quotes,
Adaptive Server treats the entry as an identifier.)

Adaptive Server recognizes the two date and time portions of the
data separately, so the time can precede or follow the date. Either
portion can be omitted, in which case, Adaptive Server uses the
default. The default date and time is January 1, 1900,
12:00:00:000AM.

For datetime, the earliest date you can use is January 1, 1753; the latest
is December 31, 9999. For smalldatetime, the earliest date you can use
is January 1, 1900; the latest is June 6, 2079. Dates earlier or later than
these dates must be entered, stored, and manipulated as char or
varchar values. Adaptive Server rejects all values it cannot recognize
as dates between those ranges.

Entering Times

The order of time components is significant for the time portion of
the data. First, enter the hours; then minutes; then seconds; then
milliseconds; then AM (or am) or PM (pm). 12AM is midnight. 12PM
is noon. To be recognized as time, a value must contain either a colon
or an AM or PM signifier. Note that smalldatetime is accurate only to
the minute.

Milliseconds can be preceded by either a colon or a period. If
preceded by a colon, the number means thousandths of a second. If
preceded by a period, a single digit means tenths of a second, two
digits mean hundredths of a second, and three digits mean
thousandths of a second.

For example, “12:30:20:1” means 20 and one-thousandth of a second
past 12:30; “12:30:20.1” means 20 and one-tenth of a second past
12:30.



8-6 Adding, Changing, and Deleting Data

Datatype Entry Rules Adaptive Server Enterprise Release 11.5.x

Among the acceptable formats for time data are:

14:30
14:30[:20:999]
14:30[:20.9]
4am
4 PM
[0]4[:30:20:500]AM

Entering Dates

The set dateformat command specifies the order of the date parts
(month, day, and year) when dates are entered as strings of numbers
with separators. Changing the language with set language can also
affect the format for dates, depending on the default date format for
the language. The default language is us_english, and the default
date format is mdy. See the set command in the Adaptive Server
Reference Manual for more information.

➤ Note
dateformat affects only the dates entered as numbers with separators, such

as “4/15/90” or “20.05.88”. It does not affect dates where the month is

provided in alphabetic format, such as “April 15, 1990” or where there are

no separators, such as “19890415”.

Date Formats

Adaptive Server recognizes three basic date formats, as described
below. Each format must be enclosed in quotes and can be preceded
or followed by a time specification, as described under “Entering
Times” on page 8-5.

• The month is entered in alphabetic format.

- Valid formats for specifying the date alphabetically are:

  Apr[il] [15][,] 1997
Apr[il] 15[,] [19]97
Apr[il] 1997 [15]

[15] Apr[il][,] 1997
15 Apr[il][,] [19]97
15 [19]97 apr[il]
[15] 1997 apr[il]



Transact-SQL User’s Guide 8-7

Adaptive Server Enterprise Release 11.5.x Datatype Entry Rules

1997 APR[IL] [15]
[19]97 APR[IL] 15
1997 [15] APR[IL]

- Month can be a 3-character abbreviation, or the full month
name, as given in the specification for the current language.

- Commas are optional.

- Case is ignored.

- If you specify only the last two digits of the year, values of less
than 50 are interpreted as “20yy”, and values of 50 or more are
interpreted as “19yy”.

- Type the century only when the day is omitted or when you
need a century other than the default (19).

- If the day is missing, Adaptive Server defaults to the first day
of the month.

- When you specify the month in alphabetic format, the dateformat
setting is ignored (see the set command in the Adaptive Server
Reference Manual).

• The month is entered in numeric format, in a string with a slash
(/), hyphen (-), or period (.) separator.

- The month, day, and year must be specified.

- The strings must be in the form:

     <num> <sep> <num> <sep> <num> [ <time spec> ]

or:

     [ <time spec> ]  <num> <sep> <num> <sep> <num>

- The interpretation of the values of the date parts depends on
the dateformat setting. If the ordering does not match the setting,
either the values will not be interpreted as dates, because the
values are out of range or the values will be misinterpreted. For
example, “12/10/08” could be interpreted as one of six
different dates, depending on the dateformat setting. See the set
command in the Adaptive Server Reference Manual for more
information.

- To enter “April 15, 1997” in mdy dateformat, you can use these
formats:

 [0]4/15/[19]97
[0]4-15-[19]97
[0]4.15.[19]97



8-8 Adding, Changing, and Deleting Data

Datatype Entry Rules Adaptive Server Enterprise Release 11.5.x

- The other entry orders are shown below with ‘‘/” as a
separator; hyphens or periods can also be used:

15/[0]4/[19]97 (dmy)
[19]97/[0]4/15 (ymd)
[19]97/15/[0]4 (ydm)
[0]4/[19]97/15 (myd)
15/[19]97/[0]4 (dym)

• The date is given as an unseparated 4-, 6-, or 8-digit string, or as
an empty string, or only the time value, but no date value, is
given.

- The dateformat is always ignored with this entry format.

- If 4 digits are given, the string is interpreted as the year, and the
month is set to January, the day to the first of the month. The
century cannot be omitted.

- 6- or 8-digit strings are always interpreted as ymd; the month
and day must always be 2 digits. This format is recognized:
[19]960415.

- An empty string (“”) or missing date is interpreted as the base
date, January 1, 1900. For example, a time value like “4:33”
without a date is interpreted as “January 1, 1900, 4:33AM’’.

The set datefirst command specifies the day of the week (Sunday,
Monday, and so on) when weekday or dw is used with datename, and a
corresponding number when used with datepart. Changing the
language with set language can also affect the format for dates,
depending on the default first day of the week value for the
language. For the default language of us_english, the default datefirst
setting is Sunday=1, Monday=2, and so on; others produce
Monday=1, Tuesday=2, and so on. The default behavior can be
changed on a per-session basis with set datefirst. See the set command
in the Adaptive Server Reference Manual for more information.

Searching for Dates and Times

You can use the like keyword and wildcard characters with datetime
and smalldatetime data as well as with char, nchar, varchar, nvarchar,
and text. When you use like with datetime or smalldatetime values,
Adaptive Server first converts the dates to the standard datetime
format and then converts them to varchar. Since the standard display
format does not include seconds or milliseconds, you cannot search
for seconds or milliseconds with like and a match pattern. Use the



Transact-SQL User’s Guide 8-9

Adaptive Server Enterprise Release 11.5.x Datatype Entry Rules

type conversion function, convert, to search for seconds and
milliseconds.

It is a good idea to use like when you search for datetime or
smalldatetime values, because datetime or smalldatetime entries may
contain a variety of date parts. For example, if you insert the value
“9:20” into a column named arrival_time, the following clause would
not find it because Adaptive Server converts the entry to “Jan 1, 1900
9:20AM”:

where arrival_time = "9:20"

However, this clause would find it:

where arrival_time like "%9:20%"

If you are using like, and the day of the month is less than 10, you
must insert two spaces between the month and day to match the
varchar conversion of the datetime value. Similarly, if the hour is less
than 10, the conversion places two spaces between the year and the
hour. The clause like May 2%, with one space between “May” and “2”,
will find all dates from May 20 through May 29, but not May 2. You
do not need to insert the extra space with other date comparisons,
only with like, since the datetime values are converted to varchar only
for the like comparison.

binary, varbinary, and image

When you enter binary, varbinary, or image data, the data must be
preceded by “0x”. For example, to enter “FF”, type “0xFF”.

If you enter strings that are longer than the specified length of a
binary or varbinary column, the entry is truncated without warning.

A length of 10 for a binary or varbinary column means 10 bytes, each
storing 2 hexadecimal digits.

When you create a default on a binary or varbinary column, precede it
with “0x”.

See “System and User-Defined Datatypes” in the Adaptive Server
Reference Manual for information on trailing zeros in hexadecimal
values.



8-10 Adding, Changing, and Deleting Data

Datatype Entry Rules Adaptive Server Enterprise Release 11.5.x

money and smallmoney

Monetary values entered with the E notation are interpreted as float.
This may cause an entry to be rejected or to lose some of its precision
when it is stored as a money or smallmoney value.

money and smallmoney values can be entered with or without a
preceding currency symbol such as the dollar sign ($), yen sign (¥) or
pound sterling sign (£). To enter a negative value, place the minus
sign after the currency symbol. Do not include commas in your entry.

You cannot enter money or smallmoney values with commas, although
the default print format for money or smallmoney data places a comma
after every 3 digits. When money or smallmoney values are displayed,
they are rounded up to the nearest cent. All the arithmetic operations
except modulo are available with money.

float, real, and double precision

You enter the approximate numeric types—float, real, and double
precision—as a mantissa followed by an optional exponent. The
mantissa can include a positive or negative sign and a decimal point.
The exponent, which begins after the character “e” or “E”, can
include a sign but not a decimal point.

To evaluate approximate numeric data, Adaptive Server multiplies
the mantissa by 10 raised to the given exponent. Table 8-1 shows
some examples of float, real, and double precision data:

The column’s binary precision determines the maximum number of
binary digits allowed in the mantissa. For float columns, you can
specify a precision of up to 48 digits; for real and double precision
columns, the precision is machine-dependent. If a value exceeds the
column’s binary precision, Adaptive Server flags the entry as an
error.

Table 8-1: Evaluating numeric data

Data Entered Mantissa Exponent Value
10E2 10 2 10 * 102

15.3e1 15.3 1 15.3 * 101

-2.e5 -2 5 -2 * 105

2.2e-1 2.2 -1 2.2 * 10-1

+56E+2 56 2 56 * 102



Transact-SQL User’s Guide 8-11

Adaptive Server Enterprise Release 11.5.x Datatype Entry Rules

decimal and numeric

The exact numeric types—dec, decimal, and numeric—begin with an
optional positive or negative sign and can include a decimal point.
The value of exact numeric data depends on the column’s decimal
precision and scale, which you specify using the following syntax:

datatype  [( precision  [, scale ])]

Adaptive Server treats each combination of precision and scale as a
distinct datatype. For example, numeric (10,0) and numeric (5,0) are
two separate datatypes. The precision and scale determine the range
of values that can be stored in a decimal or numeric column:

• The precision specifies the maximum number of decimal digits
that can be stored in the column. It includes all digits to the right
and left of the decimal point. You can specify a precision ranging
from 1 to 38 digits or use the default precision of 18 digits.

• The scale specifies the maximum number of digits that can be
stored to the right of the decimal point. The scale must be less
than or equal to the precision. You can specify a scale ranging
from 0 to 38 digits or use the default scale of 0 digits.

If a value exceeds the column’s precision or scale, Adaptive Server
flags the entry as an error. Here are some examples of valid dec and
numeric data:

The following entries result in errors because they exceed the
column’s precision or scale:

int, smallint, and tinyint

You can insert numeric values into int, smallint, and tinyint columns
with the E notation, as described in the preceding section.

Table 8-2: Valid precision and scale for numeric data

Data Entered Datatype Precision Scale Value
12.345 numeric(5,3) 5 3 12.345
-1234.567 dec(8,4) 8 4 -1234.567

Table 8-3: Invalid precision and scale for numeric data

Data Entered Datatype Precision Scale
1234.567 numeric(3,3) 3 3
1234.567 decimal(6) 6 1



8-12 Adding, Changing, and Deleting Data

Adding New Data Adaptive Server Enterprise Release 11.5.x

timestamp

You cannot insert data into a timestamp column. You must either
insert an explicit null by typing “NULL” in the column or use an
implicit null by providing a column list that skips the timestamp
column. Adaptive Server updates the timestamp value after each
insert or update. See “Inserting Data into Specific Columns” on page
8-13 for more information.

Adding New Data

You can use the insert command to add rows to the database in two
ways: with the values keyword or with a select statement:

• The values keyword specifies values for some or all of the columns
in a new row. A simplified version of the syntax for the insert
command using the values keyword is:

   insert table_name
   values ( constant1 , constant2 , ...)

• You can use a select statement in an insert statement to pull values
from one or more tables (up to a limit of 16 tables, including the
table into which you are inserting). A simplified version of the
syntax for the insert command using a select statement is:

   insert table_name
   select column_list
     from table_list
     where search_conditions

insert Syntax

Here is the full syntax for the insert command:

insert [into] [ database .[ owner .]]{ table_name  |
view_name } [( column_list )]
{values ( constant_expression
[, constant_expression ]...) | select_statement }



Transact-SQL User’s Guide 8-13

Adaptive Server Enterprise Release 11.5.x Adding New Data

➤ Note
When you add text or image values with insert, all the data is written to the

transaction log. You can use the writetext command to add these values

without logging the long chunks of data that may comprise text or image
values. See “Inserting Data into Specific Columns” on page 8-13 and

“Changing text and image Data” on page 8-30.

Adding New Rows with values

This insert statement adds a new row to the publishers table, giving a
value for every column in the row:

insert into publishers
values ("1622", "Jardin, Inc.", "Camden", "NJ")

Notice that the data values are typed in the same order as the column
names in the original create table statement, that is, first the ID number,
then the name, then the city, and, finally, the state. The values data is
surrounded by parentheses and all character data is enclosed in
single or double quotes.

Use a separate insert statement for each row you add.

Inserting Data into Specific Columns

You can add data to some columns in a row by specifying only those
columns and their data. All other columns that are not included in
the column list must be defined to allow null values. The skipped
columns can accept defaults. If you skip a column that has a default
bound to it, the default is used.

You may especially want to use this form of the insert command to
insert all of the values in a row except the text or image values, and
then use writetext to insert the long data values so that these values are
not stored in the transaction log. Also, this form of the command can
be used to skip over timestamp data.

Adding data in only two columns, for example, pub_id and
pub_name, requires a command like this:

insert into publishers (pub_id, pub_name)
values ("1756", "The Health Center")



8-14 Adding, Changing, and Deleting Data

Adding New Data Adaptive Server Enterprise Release 11.5.x

The order in which you list the column names must match the order
in which you list the values. The following example produces the
same results as the previous one:

insert publishers (pub_name, pub_id)
values("The Health Center", "1756")

Either of the insert statements would put “1756” in the identification
number column and “The Health Center” in the publisher name
column. Since the pub_id column in publishers has a unique index,
you cannot execute both of these insert statements; the second
attempt to insert a pub_id value of “1756” produces an error message.

The following select statement shows the row that was added to
publishers:

select *
from publishers
where pub_name = "The Health Center"

pub_id  pub_name             city    state
------- -----------------    ------  -------
1756    The Health Center    NULL    NULL

Adaptive Server enters null values in the city and state columns
because no value was given for these columns in the insert statement,
and the publisher table allows null values in these columns.

Restricting Column Data: Rules

You can create a rule and bind it to a column or user-defined
datatype. Rules govern the kind of data that can or cannot be added.

The pub_id column of the publishers table is an example. A rule called
pub_idrule, which specifies acceptable publisher identification
numbers, is bound to the column. The acceptable IDs are “1389”,
“0736”, “0877”, “1622”, and “1756” or any 4-digit number the first 2
digits of which are “99”. If you try to enter any other number, you get
an error message.

When you get this kind of error message, you may want to look at the
definition of the rule. Use the system procedure sp_helptext:

sp_helptext pub_idrule



Transact-SQL User’s Guide 8-15

Adaptive Server Enterprise Release 11.5.x Adding New Data

---------
        1

(1 row affected)

text
---------------------------------------------------
create rule pub_idrule
as @pub_id in ("1389", "0736", "0877", "1622", "1756")
or @pub_id like "99[0-9][0-9]"

(1 row affected)

For more general information on a specific rule, use sp_help. Or use
sp_help with a table name as a parameter to find out whether any of
its defined columns has a rule. Chapter 12, “Defining Defaults and
Rules for Data,” describes rules in more detail.

Using the NULL Character String

Only columns for which NULL was specified in the create table
statement and into which you have explicitly entered NULL (no
quotes), or into which no data has been entered, contain null values.
Avoid entering the character string “NULL” (with quotes) as data for
a character column. It can only lead to confusion. Use “N/A” or
“none” or a similar value instead. When you want to enter the value
NULL explicitly, do not use single or double quotes.

To explicitly insert NULL into a column:

values({ expression  | null}
[, { expression  | null}]...)

The following example shows two equivalent insert statements. In the
first statement, the user explicitly inserts a NULL into column t1. In
the second, Adaptive Server provides a NULL value for t1 because
the user has not specified an explicit column value:

create table test
(t1 char(10) null, t2 char(10) not null)

insert test
values (null, "stuff")

insert test (t2)
values ("stuff")



8-16 Adding, Changing, and Deleting Data

Adding New Data Adaptive Server Enterprise Release 11.5.x

NULL Is Not an Empty String

The empty string (“ ”or ‘ ’) is always stored as a single space in
variables and column data. This concatenation statement:

"abc" + "" + "def"

is equivalent to “abc def”, not to “abcdef”. The empty string is never
evaluated as NULL.

Inserting Nulls into Columns That Do Not Allow Them

To insert data with select from a table that has null values in some
fields into a table that does not allow null values, you must provide
a substitute value for any NULL entries in the original table. For
example, to insert data into an advances table that does not allow null
values, this example substitutes “0” for the NULL fields:

insert advances
select pub_id, isnull(advance, 0) from titles

Without the isnull function, this command inserts all the rows with
non-null values into advances and produces error messages for all the
rows where the advance column in titles contains NULL.

If this kind of substitution cannot be made for your data, you cannot
insert data containing null values into columns with a NOT NULL
specification.

Adding Rows Without Values in All Columns

When you specify values for only some of the columns in a row, one
of four things can happen to the columns with no values:

• A default value is entered if one exists for the column or user-
defined datatype of the column. See Chapter 12, “Defining
Defaults and Rules for Data,” or create default in the Adaptive Server
Reference Manual for details.

• NULL is entered if NULL was specified for the column when the
table was created and no default value exists for the column or
datatype. See also create table in the Adaptive Server Reference
Manual.

• A unique, sequential value is entered if the column has the
IDENTITY property.



Transact-SQL User’s Guide 8-17

Adaptive Server Enterprise Release 11.5.x Adding New Data

• Adaptive Server rejects the row and displays an error message if
NULL was not specified for the column when the table was
created and no default exists.

Table 8-4 shows what you would see under these circumstances:

You can use the system procedure sp_help to get a report on a
specified table or default or on any other object listed in the system
table sysobjects. To see the definition of a default, use the system
procedure sp_helptext.

Changing a Column’s Value to NULL

Use the update statement to set a column value to NULL. Its syntax is:

set column_name  = { expression  | null}
[, column_name  = { expression  | null}]...

The following example finds all rows in which the title_id is TC3218
and replaces the advance with NULL:

update titles
set advance = null
where title_id = "TC3218"

Adaptive Server-Generated Values for IDENTITY Columns

When you insert a row into a table with an IDENTITY column,
Adaptive Server automatically generates the column value. Do not
include the name of the IDENTITY column in the column list or its
value in the values list.

This insert statement adds a new row to the sales_daily table. Notice
that the column list does not include the IDENTITY column, row_id:

insert sales_daily (stor_id)
values ("7896")

The following statement shows the row that was added to sales_daily.
Adaptive Server automatically generated the next sequential value,
2, for row_id:

Table 8-4: Columns with no values

Default Exists
for Column or
Datatype

Column Defined
NOT NULL

Column
Defined to
Allow NULL

Column Is IDENTITY

Yes The default The default Next sequential value
No Error message NULL Next sequential value



8-18 Adding, Changing, and Deleting Data

Adding New Data Adaptive Server Enterprise Release 11.5.x

select * from sales_daily
where stor_id = "7896"

sale_id stor_id
-------      -------

  1      7896

(1 row affected)

Explicitly Inserting Data into an IDENTITY Column

At times, you may want to insert a specific value into an IDENTITY
column, rather than accept a server-generated value. For example,
you may want the first row inserted the table to have an IDENTITY
value of 101, rather than 1. Or you may need to reinsert a row that
was deleted by mistake.

The table owner can explicitly insert a value into an IDENTITY
column. The Database Owner and System Administrator can
explicitly insert a value into an IDENTITY column if they have been
granted explicit permission by the table owner or if they are acting as
the table owner through the setuser command.

Before inserting the data, set the identity_insert option on for the table.
You can set identity_insert on for only one table at a time in a database
within a session.

This example specifies a “seed” value of 101 for the IDENTITY
column:

set identity_insert sales_daily on

insert sales_daily (syb_identity, stor_id)
values (101, "1349")

The insert statement lists each column, including the IDENTITY
column, for which a value is specified. When the identity_insert option
is set to on, each insert statement for the table must specify an explicit
column list. The values list must specify an IDENTITY column value,
since IDENTITY columns do not allow null values.

After you set identity_insert to off, you can insert IDENTITY column
values automatically, without specifying the IDENTITY column, as
before. Subsequent insertions use IDENTITY values based on the
value explicitly specified after you set identity_insert on. For example, if
you specify 101 for the IDENTITY column, subsequent insertions
would be 102, 103, and so on.



Transact-SQL User’s Guide 8-19

Adaptive Server Enterprise Release 11.5.x Adding New Data

➤ Note
Adaptive Server does not enforce the uniqueness of the inserted value. You

can specify any positive integer within the range allowed by the column’s

declared precision. To ensure that only unique column values are accepted,

create a unique index on the IDENTITY column before inserting any rows.

Retrieving IDENTITY Column Values with @@identity

Use the @@identity global variable to retrieve the last value inserted
into an IDENTITY column. The value of @@identity changes each
time an insert, select into, or bcp statement attempts to insert a row into
a table.

• If the statement affects a table without an IDENTITY column,
@@identity is set to 0.

• If the statement inserts multiple rows, @@identity reflects the last
value inserted into the IDENTITY column.

This change is permanent. @@identity does not revert to its previous
value if the insert, select into, or bcp statement fails or if the transaction
that contains it is rolled back. Also, the value for @@identity within a
stored procedure or trigger does not affect the value outside the
stored procedure or trigger.

For example:

select @@identity

---------------------------------------
                                   101

create procedure reset_id as
    set identity_insert sales_daily on
    insert into sales_daily (syb_identity, stor_id)
         values (102, "1349")
    select @@identity
select @@identity

execute reset_id

---------------------------------------
                                  102

select @@identity

---------------------------------------
                                  101



8-20 Adding, Changing, and Deleting Data

Adding New Data Adaptive Server Enterprise Release 11.5.x

Reserving a Block of IDENTITY Column Values

The identity grab size configuration parameter allows each Adaptive
Server process to reserve a block of IDENTITY column values for
inserts into tables that have an IDENTITY column. This
configuration parameter is a performance enhancement for
multiprocessor environments. It reduces the number of times an
Adaptive Server engine must hold an internal synchronization
structure when inserting implicit identity values. For example, the
following command sets the number of reserved values to 20:

sp_configure "identity grab size", 20

Afterward, when a user performs an insert into a table containing an
IDENTITY column, Adaptive Server reserves a block of 20
IDENTITY column values for that user. Therefore, during the current
session, the next 20 rows the user inserts into the table will have
sequential IDENTITY column values. If a second user inserts rows
into the same table while the first user is performing inserts,
Adaptive Server will reserve the next block of 20 IDENTITY column
values for the second user.

For example, suppose the following table containing an IDENTITY
column has been created and the identity grab size is set to 10:

create table my_titles
(title_id   numeric(5,0)    identity,
title varchar(30)     not null)

The first user, user 1, inserts the following rows into the my_titles
table:

insert my_titles (title)
values ("The Trauma of the Inner Child")

insert my_titles (title)
values ("A Farewell to Angst")

insert my_titles (title)
values ("Life Without Anger")

Adaptive Server allows user 1 a block of 10 sequential IDENTITY
values, for example, title_id numbers 1–10.

While user 1 is inserting rows to my_titles, the second user, user 2,
begins inserting rows into my_titles. Adaptive Server grants user 2
the next available block of reserved IDENTITY values, that is, values
11–20.

If user 1 enters only three titles and then logs off Adaptive Server, the
remaining seven reserved IDENTITY values are lost. The result is a
gap in the table’s IDENTITY values. Avoid setting the identity grab size



Transact-SQL User’s Guide 8-21

Adaptive Server Enterprise Release 11.5.x Adding New Data

too high, because this can cause gaps in the IDENTITY column
numbering.

Reaching the IDENTITY Column’s Maximum Value

The maximum value that you can insert into an IDENTITY column is
10 PRECISION - 1. If you do not specify a precision for the IDENTITY
column, Adaptive Server uses the default precision (18 digits) for
numeric columns.

Once an IDENTITY column reaches its maximum value, all further
insert statements return an error that aborts the current transaction.
When this happens, use one of the following methods to remedy the
problem.

Create a New Table with a Larger Precision

If the table contains IDENTITY columns that are used for referential
integrity, you need to retain the current numbers for the IDENTITY
column values.

1. Use the create table command to create a new table that is identical
to the old one except that it has a larger precision value for the
IDENTITY column.

2. Use the insert into command to copy the data from the old table
into to the new one.

Renumber the Table’s IDENTITY Columns with bcp

If the table does not contain IDENTITY columns used for referential
integrity, and if there are gaps in the numbering sequence, you can
renumber the IDENTITY column to eliminate gaps, which allows
more room for insertions. Manually inserting values into the
IDENTITY column, deleting rows, rolling back transactions,
restarting Adaptive Server, and setting the identity grab size too high
can create gaps in IDENTITY column values.

To sequentially renumber IDENTITY column values (and thus
remove the gaps), use the bcp utility as follows:

1. From the operating system command line, use bcp to copy out
the data. For example:

bcp pubs2..mytitles out mytitles_file -N -c

The -N instructs bcp not to copy the IDENTITY column values
from the table to the host file. The -c instructs bcp to use character
mode.



8-22 Adding, Changing, and Deleting Data

Adding New Data Adaptive Server Enterprise Release 11.5.x

2. In Adaptive Server, create a new table that is identical to the old
table.

3. From the operating system command line, use bcp to copy the
data into the new table:

bcp pubs2..mynewtitles in mytitles_file -N -c

The -N instructs bcp to have Adaptive Server assign the
IDENTITY column values when loading data from the host file.
The -c instructs bcp to use character mode.

4. In Adaptive Server, drop the old table, and use sp_rename to
change the new table name to the old table name.

If the IDENTITY column is a primary key for joins, you may need to
update the foreign keys in other tables.

By default, when you bulk copy data into a table with an IDENTITY
column, bcp assigns each row a temporary IDENTITY column value
of 0. As it inserts each row into the table, the server assigns it a
unique, sequential IDENTITY column value, beginning with the
next available value. To enter an explicit IDENTITY column value for
each row, specify the -E (UNIX) or /identity (OpenVMS) flag. Refer to
the Utility Programs manual for your platform for more information
on bcp options that affect IDENTITY columns.

Adding New Rows with select

To pull values into a table from one or more other tables, use a select
clause in the insert statement. The select clause can insert values into
some or all of the columns in a row.

Inserting values for only some columns can come in handy when
you want to take some values from an existing table. Then, you can
use update to add the values for the other columns.

Before inserting values for some, but not all, columns in a table, make
sure that a default exists or that NULL has been specified for the
columns for which you are not inserting values. Otherwise,
Adaptive Server returns an error message.

When you insert rows from one table into another, the two tables
must have compatible structures—that is, the matching columns
must be either the same datatypes or datatypes between which
Adaptive Server automatically converts.



Transact-SQL User’s Guide 8-23

Adaptive Server Enterprise Release 11.5.x Adding New Data

➤ Note
You cannot insert data from a table that allows null values into a table that

does not, if any of the data being inserted is null.

If the columns are in the same order in their create table statements,
you do not need to specify column names in either table. Suppose
you have a table named newauthors that contains some rows of
author information in the same format as in authors. To add to authors
all the rows in newauthors:

insert authors
select *
from newauthors

To insert rows into a table based on data in another table, the
columns in the two tables do not have to be listed in the same
sequence in their respective create table statements. You can use either
the insert or the select statement to order the columns so that they
match.

For example, suppose the create table statement for the authors table
contained the columns au_id, au_fname, au_lname, and address, in that
order, and newauthors contained au_id, address, au_lname, and
au_fname. You would have to make the column sequence match in
the insert statement. You could do this in either of two ways:

insert authors (au_id, address, au_lname, au_fname)
select * from newauthors

or

insert authors
select au_id, au_fname, au_lname, address
    from newauthors

If the column sequence in the two tables fails to match, Adaptive
Server cannot complete the insert operation or completes it
incorrectly, putting data in the wrong column. For example, you
might get address data in the au_lname column.

Computed Columns

You can use computed columns in a select statement inside an insert
statement. For example, imagine that a table named tmp contains
some new rows for the titles table, which contains some out-of-date
data—the price figures need to be doubled. A statement to increase
the prices and insert the tmp rows into titles looks like the following:



8-24 Adding, Changing, and Deleting Data

Adding New Data Adaptive Server Enterprise Release 11.5.x

insert titles
select title_id, title, type, pub_id, price*2,
    advance, total_sales, notes, pubdate, contract
from tmp

When you perform computations on a column, you cannot use the
select * syntax. Each column must be named individually in the select
list.

Inserting Data into Some Columns

You can use the select statement to add data to some, but not all,
columns in a row just as you do with the values clause. Simply specify
the columns to which you want to add data in the insert clause.

For example, some authors in the authors table do not have titles and,
therefore, do not have entries in the titleauthor table. To pull their
au_id numbers out of the authors table and insert them into the
titleauthor table as placeholders, try this statement:

insert titleauthor (au_id)
select au_id
    from authors
    where au_id not in
    (select au_id from titleauthor)

This statement is not legal, because a value is required for the title_id
column. Null values are not permitted and no default is specified.
You can enter the dummy value “xx1111” for titles_id by using a
constant, as follows:

insert titleauthor (au_id, title_id)
select au_id, "xx1111"
    from authors
    where au_id not in
    (select au_id from titleauthor)

The titleauthor table now contains four new rows with entries for the
au_id column, dummy entries for the title_id column, and null values
for the other two columns.

Inserting Data from the Same Table

You can insert data into a table based on other data in the same table.
Essentially, this means copying all or part of a row.

For example, you can insert a new row in the publishers table that is
based on the values in an existing row in the same table. Make sure
you follow the rule on the pub_id column. This is how:



Transact-SQL User’s Guide 8-25

Adaptive Server Enterprise Release 11.5.x Changing Existing Data

insert publishers
select "9999", "test", city, state
    from publishers
    where pub_name = "New Age Books"

(1 row affected)

select * from publishers

pub_id  pub_name              city        state
------- --------------------- -------     ------
0736    New Age Books         Boston      MA
0877    Binnet & Hardley      Washington  DC
1389    Algodata Infosystems  Berkeley    CA
9999    test                  Boston      MA

(4 rows affected)

The example inserts the two constants (“9999” and “test”) and the
values from the city and state columns in the row that satisfied the
query.

Changing Existing Data

Use the update command to change single rows, groups of rows, or all
rows in a table. The update command is followed by the name of the
table or view. As in all data modification statements, you can change
the data in only one table at a time.

The update command specifies the row or rows you want changed
and the new data. The new data can be a constant or an expression
that you specify or data pulled from other tables.

If an update statement violates an integrity constraint, the update does
not take place and an error message is generated. The update is
canceled, for example, if it affects the table’s IDENTITY column, or if
one of the values being added is the wrong datatype, or if it violates
a rule that has been defined for one of the columns or datatypes
involved.

Adaptive Server does not prevent you from issuing an update
command that updates a single row more than once. However,
because of the way that update is processed, updates from a single
statement do not accumulate. That is, if an update statement modifies
the same row twice, the second update is not based on the new
values from the first update but on the original values. The results
are unpredictable, since they depend on the order of processing.



8-26 Adding, Changing, and Deleting Data

Changing Existing Data Adaptive Server Enterprise Release 11.5.x

See Chapter 9, “Views: Limiting Access to Data,” for restrictions on
updating views.

➤ Note
The update command is logged. If you are changing large blocks of text or

image data, try using the writetext command, which is not logged. Also, you

are limited to approximately 125K per update statement. See the discussion

of writetext in “Changing text and image Data” on page 8-30.

update Syntax

A simplified version of the update syntax for updating specified rows
with an expression is:

update table_name
set column_name  = expression
where search_conditions

For example, if Reginald Blotchet-Halls decides to change his name
to Goodbody Health in order to boost his visualization processes,
here is how to change his row in the authors table:

update authors
set au_lname = "Health", au_fname = "Goodbody"
where au_lname = "Blotchet-Halls"

The following simplified syntax statement updates a table based on
data from another table:

update table_name
set column_name  = expression
  from table_name
  where search_conditions

You can set variables in an update statement with the following
simplified syntax statement:

update table_name
set variable_name  = expression
   where search_conditions



Transact-SQL User’s Guide 8-27

Adaptive Server Enterprise Release 11.5.x Changing Existing Data

The full syntax for update is:

update [[ database .] owner .]{ table_name  | view_name }
set [[[ database .] owner .]{ table_name . |  view_name .}]
        column_name1  =
        { expression1  | null | ( select_statement )} |

variable_name1 =
        { expression1  | null | ( select_statement )}
        [, column_name2 = { expression2  | null |
         ( select_statement )}]... |
           variable_name2  = { expression1  | null
|        ( select_statement )}
[from [[ database .] owner .]{ table_name  | view_name }
        [, [[ database .] owner .]{ table_name  |

view_name }]]...
[where search_conditions ]

Using the set Clause with update

The set clause specifies the columns and the changed values. The
where clause determines which row or rows are to be updated. If you
do not have a where clause, the specified columns of all the rows are
updated with the values given in the set clause.

➤ Note
Before trying the examples in this section, make sure you know how to

reinstall the pubs2 database. See the installation and configuration guide

for your platform for instructions on installing the pubs2 database.

For example, if all the publishing houses in the publishers table move
their head offices to Atlanta, Georgia, this is how you update the
table:

update publishers
set city = "Atlanta", state = "GA"

In the same way, you can change the names of all the publishers to
NULL with this statement:

update publishers
set pub_name = null

You can also use computed column values in an update. To double
all the prices in the titles table, use this statement:

update titles
set price = price * 2



8-28 Adding, Changing, and Deleting Data

Changing Existing Data Adaptive Server Enterprise Release 11.5.x

Since there is no where clause, the change in prices is applied to every
row in the table.

Assigning Variables in the set Clause

You can assign variables in the set clause of an update statement,
similar to how you can assign them in a select statement. Using
variables with update reduces lock contention and CPU consumption
that can occur when extra select statements are used in conjunction
with update.

The following example uses a declared variable to update the titles
table:

declare @price money
select @price = 0
update titles
    set total_sales = total_sales + 1,
    @price = price
    where title_id = "BU1032"
select @price, total_sales
    from titles
    where title_id = "BU1032"

                          total_sales
 ------------------------ -----------
                    19.99        4096

(1 row affected)

For details on assigning variables in an update statement, see “Using
Variables in update statements” in the update section of the Adaptive
Server Reference Manual. For more information on declared variables,
see “Local Variables” on page 13-31.

Using the where Clause with update

The where clause specifies which rows are to be updated. For
example, in the unlikely event that Northern California is renamed
Pacifica (abbreviated PC) and the people of Oakland vote to change
the name of their city to something exciting, like Big Bad Bay City,
here is how you can update the authors table for all former Oakland
residents whose addresses are now out of date:

update authors
set state = "PC", city = "Big Bad Bay City"
where state = "CA" and city = "Oakland"



Transact-SQL User’s Guide 8-29

Adaptive Server Enterprise Release 11.5.x Changing Existing Data

You need to write another statement to change the name of the state
for residents of other cities in Northern California.

Using the from Clause with update

Use the from clause to pull data from one or more tables into the table
you are updating.

For example, earlier in this chapter, an example was given for
inserting some new rows into the titleauthor table for authors without
titles, filling in the au_id column, and using dummy or null values for
the other columns. When one of these authors, Dirk Stringer, writes
a book, The Psychology of Computer Cooking, a title identification
number is assigned to his book in the titles table. You can modify his
row in the titleauthor table by adding a title identification number for
him:

update titleauthor
set title_id = titles.title_id
from titleauthor, titles, authors
    where titles.title =
    "The Psychology of Computer Cooking"
    and authors.au_id = titleauthor.au_id
    and au_lname = "Stringer"

Note that an update without the au_id join changes all the title_ids in
the titleauthor table so that they are the same as The Psychology of
Computer Cooking’s identification number. If two tables are identical
in structure except that one has NULL fields and some null values
and the other has NOT NULL fields, it is impossible to insert the data
from the NULL table into the NOT NULL table with a select. In other
words, a field that does not allow NULL cannot be updated by
selecting from a field that does, if any of the data is NULL.

As an alternative to the from clause in the update statement, you can
use a subquery, which is ANSI-compliant.

Updating IDENTITY Columns

You can use the syb_identity keyword, qualified by the table name,
where necessary, to update an IDENTITY column. For example, the
following update statement finds the row in which the IDENTITY
column equals 1 and changes the name of the store to “Barney’s”:



8-30 Adding, Changing, and Deleting Data

Changing text and image Data Adaptive Server Enterprise Release 11.5.x

update stores_cal
set stor_name = "Barney's"
where syb_identity = 1

Changing text and image Data

Use the writetext command to change text or image values when you do
not want to store long text values in the database transaction log. In
these cases, do not use the update command, which can also be used
for text or image columns, because update commands are always
logged. In its default mode, writetext commands are not logged.

➤ Note
To use writetext in its default, non-logged state, a System Administrator must

use sp_dboption to set select into/bulkcopy/pllsort on. This permits the

insertion of non-logged data. After using writetext, it is necessary to dump

the database. You cannot use dump transaction after making unlogged

changes to the database.

The writetext command completely overwrites any data in the column
it affects. For writetext to work, the column must already contain a
valid text pointer.

You can use the textvalid() function to check for a valid pointer, as
follows:

select textvalid("blurbs.copy", textptr(copy))
from blurbs

There are two ways to create a text pointer:

• insert actual data into the text or image column

• update the column with data or a NULL

An “initialized” text column uses 2K of storage, even to store a
couple of words. Adaptive Server saves space by not initializing text
columns when explicit or implicit null values are placed in text
columns with insert. The following code fragment inserts a value with
a null text pointer, checks for the existence of a text pointer, and then
updates the blurbs table. Explanatory comments are embedded in the
text:

/* Insert a value with a text pointer. This could
** be done in a separate batch session from the
** of this example. */



Transact-SQL User’s Guide 8-31

Adaptive Server Enterprise Release 11.5.x Deleting Data

insert blurbs (au_id) values ("267-41-2394")

/* Check for a valid pointer in an existing row.
** Use textvalid in a conditional clause; if no
** valid text pointer exists, update 'copy' to null
** to initialize the pointer. */

if (select textvalid("blurbs.copy", textptr(copy))
    from blurbs
    where au_id = "267-41-2394") = 0
begin
    update blurbs

set copy = NULL
       where au_id = "267-41-2394"
end

/* Now that we know we have a valid pointer, we can
** use writetext to insert the text into the
** column. The next statements put the text
** into the local variable @val, then writetext
** places the new text string into the row
** pointed to by @val. */

declare @val varbinary(16)
select @val = textptr(copy)
    from blurbs
    where au_id = "267-41-2394"
writetext blurbs.copy @val
    "This book is a must for true data junkies."

For more information on batch files and the control-of-flow language
used in this example, see Chapter 13, “Using Batches and Control-of-
Flow Language.”

Deleting Data

Like insert and update, delete works for both single-row and multiple-
row operations, but it is more suitable for the latter. As for the other
data modification statements, you can delete rows based on data in
other tables.

For example, if you decide to remove one row from publishers—the
row added for Jardin, Inc.—type:

delete publishers
where pub_name = "Jardin, Inc."



8-32 Adding, Changing, and Deleting Data

Deleting Data Adaptive Server Enterprise Release 11.5.x

delete Syntax

A simplified version of delete syntax is:

delete table_name
where column_name  = expression

Here is the complete syntax statement, which shows that you can
remove rows either on the basis of specified expressions or based on
data from other tables:

delete [from]
[[ database .] owner .]{ view_name | table_name }
[where search_conditions ]

delete [[ database .] owner .]{ table_name  | view_name }
[from [[ database .] owner .]{ view_name | table_name
 [(index { index_name  | table_name  }
    [ prefetch size  ][lru|mru])]}
 [, [[ database .] owner .]{ view_name | table_name
 (index { index_name  | table_name  }
   [ prefetch size  ][lru|mru])]} ]...]
[where search_conditions ]

delete [from]
[[ database .] owner .]{ table_name | view_name }
where current of cursor_name

The optional from immediately after the delete keyword is included for
compatibility with other versions of SQL. The from on the second line
is an Adaptive Server enhancement that allows you to make
deletions based on data in other tables.

Using the where Clause with delete

The where clause specifies which rows are to be removed. When no
where clause is given in the delete statement, all rows in the table are
removed.

Using the from Clause with delete

The from clause in the second position of a delete statement is a special
Transact-SQL feature that allows you to select data from a table or
tables and delete corresponding data from the first-named table. The
rows you select in the from clause specify the conditions for the delete.

Suppose that a complex corporate deal results in the acquisition of all
the Big Bad Bay City (formerly Oakland) authors and their books by



Transact-SQL User’s Guide 8-33

Adaptive Server Enterprise Release 11.5.x Deleting Data

another publisher. You need to remove all these books from the titles
table right away, but you do not know their titles or identification
numbers. The only information you have is the author’s names and
addresses.

You can delete the rows in titles by finding the author identification
numbers for the rows that have Big Bad Bay City as the town in the
authors table and using these numbers to find the title identification
numbers of the books in the titleauthor table. In other words, a three-
way join is required to find the rows you want to delete in the titles
table.

The three tables are all included in the from clause of the delete
statement. However, only the rows in the titles table that fulfill the
conditions of the where clause are deleted. You would have to do
separate deletes to remove relevant rows in tables other than titles.

Here is the statement you need:

delete titles
from authors, titles, titleauthor
where titles.title_id = titleauthor.title_id
and authors.au_id = titleauthor.au_id
and city = "Big Bad Bay City"

The deltitle trigger in the pubs2 database prevents you from actually
performing this deletion, because it does not allow you to delete any
titles that have sales recorded in the sales table.

Deleting from IDENTITY Columns

You can use the syb_identity keyword in a delete statement on tables
containing an IDENTITY column. For example, the following delete
statement removes the row for which row_id equals 1:

delete sales_monthly
where syb_identity = 1

After you delete IDENTITY column rows, you may want to eliminate
gaps in the table’s IDENTITY column numbering sequence. See
“Renumber the Table’s IDENTITY Columns with bcp” on page 8-21.



8-34 Adding, Changing, and Deleting Data

Deleting All Rows from a Table Adaptive Server Enterprise Release 11.5.x

Deleting All Rows from a Table

Use truncate table as a fast method of deleting all the rows in a table. It
is almost always faster than a delete statement with no conditions,
because the delete logs each change, while truncate table just logs the
deallocation of whole data pages. truncate table immediately frees all
the space that the table’s data and indexes had occupied. The freed
space can then be used by any object. The distribution pages for all
indexes are also deallocated. Remember to run update statistics after
adding new rows to the table.

As with delete, a table emptied with the truncate table command
remains in the database, along with its indexes and other associated
objects, unless you enter a drop table command.

You cannot use truncate table if another table has rows that reference it
through a referential integrity constraint. Delete the rows from the
foreign table, or truncate the foreign table and then truncate the
primary table. See “General Rules for Creating Referential Integrity
Constraints” on page 7-35.

truncate table Syntax

The syntax of truncate table is:

truncate table [[ database .] owner .] table_name

For example, to remove all the data in sales, type:

truncate table sales

Permission to use the truncate table command, like drop table, defaults to
the table owner and cannot be transferred.

A truncate table command is not caught by a delete trigger. See Chapter
16, “Triggers: Enforcing Referential Integrity,” for details on triggers.



Transact-SQL User’s Guide 9-1

9 Views: Limiting Access to Data 9.

A view is a named select statement that is stored in a database as an
object. It allows you to view a subset of rows or columns in one or
more tables. You use the view by invoking its name in other Transact-
SQL statements. You can use views to focus, simplify, and customize
each user’s perception of the tables in a particular database. Views
also provide a security mechanism by allowing users access only to
the data they require.

This chapter discusses:

• How Views Work   9-1

• Creating Views   9-6

• Retrieving Data Through Views   9-14

• Modifying Data Through Views   9-17

• Dropping Views   9-22

• Using Views As Security Mechanisms   9-23

• Getting Information About Views   9-23

How Views Work

A view is an alternative way of looking at the data in one or more
tables. You can think of a view as a frame through which you see only
the data in which you are interested. That is why one speaks of
looking at data or changing data “through” a view.

For example, suppose you are working on a project that is specific to
the state of Utah. You can create a view that lists only the authors
who live in Utah, as follows:

create view authors_ut
as select * from authors
where state = "UT"

To see the authors_ut view, enter:

select * from authors_ut

When the authors who live in Utah are added to or removed from the
authors table, the authors_ut view reflects the updated authors table.

A view is derived from one or more real tables whose data is
physically stored in the database. The tables from which a view is



9-2 Views: Limiting Access to Data

How Views Work Adaptive Server Enterprise Release 11.5.x

derived are called its base tables or underlying tables. A view can
also be derived from another view.

The definition of a view, in terms of the base tables from which it is
derived, is stored in the database. No separate copies of data are
associated with this stored definition. The data that you view is
stored in the underlying tables.

A view looks exactly like any other database table. You can display it
and operate on it almost exactly as you can any other table. Transact-
SQL has been enhanced so that there are no restrictions at all on
querying through views and fewer than usual on modifying them.
The exceptions are explained later in this chapter.

When you modify the data you see through a view, you are actually
changing the data in the underlying base tables. Conversely, changes
to data in the underlying base tables are automatically reflected in
the views that are derived from them.

Advantages of Views

The examples in this chapter demonstrate how views can be used to
focus, simplify, and customize each user’s perception of the
database. Views also provide an easy-to-use security measure. In
addition, they can be helpful when changes are made to the structure
of the database and users prefer to work with the database in the
style to which they have become accustomed.

Focus

Views allow users to focus on the data that interests them and on the
tasks for which they are responsible. Data that is not of interest to a
user can be left out of the view.

Simpler Data Manipulation

Not only the users’ perception of the data, but also their
manipulation of it, can be simplified with views. Frequently used
joins, projections, and selections can be defined as views so that users
do not have to specify all the conditions and qualifications each time
an operation is performed on that data.



Transact-SQL User’s Guide 9-3

Adaptive Server Enterprise Release 11.5.x How Views Work

Customization

Views allow different users to see the same data in different ways,
even when they are using the same data at the same time. This
advantage is particularly important when users of many different
interests and skill levels share the same database.

Security

Through a view, users can query and modify only the data they can
see. The rest of the database is neither visible nor accessible.

With the grant and revoke commands, each user’s access to the
database can be restricted to specified database objects—including
views. If the view and all the tables and views from which it is
derived are owned by the same user, that user can grant permission
to others to use the view while denying permission to use its
underlying tables and views. This is a simple but effective security
mechanism. See the Security Administration Guide for details on the
grant and revoke commands.

By defining different views and selectively granting permissions on
them, users can be restricted to different subsets of data. The
following illustrates the use of views for security purposes:

• Access can be restricted to a subset of the rows of a base table, that
is, a value-dependent subset. For example, you might define a
view that contains only the rows for business and psychology
books, in order to keep information about other types of books
hidden from some users.

• Access can be restricted to a subset of the columns of a base table,
that is, a value-independent subset. For example, you might
define a view that contains all the rows of the titles table, but
omits the royalty and advance columns, since this information is
sensitive.

• Access can be restricted to a row-and-column subset of a base
table.

• Access can be restricted to the rows that qualify for a join of more
than one base table. For example, you might define a view that
joins the titles, authors, and titleauthor table in order to display the
names of the authors and the books they have written. This view
would hide personal data about authors and financial
information about the books.



9-4 Views: Limiting Access to Data

How Views Work Adaptive Server Enterprise Release 11.5.x

• Access can be restricted to a statistical summary of data in a base
table. For example, through the view category_price a user can
access only the average price of each type of book.

• Access can be restricted to a subset of another view or a
combination of views and base tables. For example, through the
view hiprice_computer a user can access the title and price of
computer books that meet the qualifications in the view
definition of hiprice.

To create a view, a user must be granted create view permission by the
Database Owner, and must have appropriate permissions on any
tables or views referenced in the view definition.

If a view references objects in different databases, users of the view
must be valid users or guests in each of the databases.

As the owner of an object on which other users have created views,
you must be aware of who can see what data through what views.
Consider this situation: The Database Owner has granted “harold”
create view permission, and a user named “maude” has granted
“harold” permission to select from a table she owns. Given these
permissions, “harold” can create a view that selects all columns and
rows from the table owned by “maude”. If “maude” subsequently
revokes permission for “harold” to select from her table, he can still
look at her data through the view he has created.

Logical Data Independence

Views help to shield users from changes in the structure of the real
tables if such changes become necessary.

For example, suppose you restructure the database by using select into
to split the titles table into these two new base tables and then
dropping the titles table:

titletext (title_id, title, type, notes)

titlenumbers (title_id, pub_id, price, advance,
royalty, total_sales, pub_date)

The old titles table can be “regenerated” by joining on the title_id
columns of the two new tables. To shield the changed structure of the
database from users, you can create a view that is a join of the two
new tables. You can even name it titles.

Any query or stored procedure that previously referred to the base
table titles now refers to the view titles. As far as the users are
concerned, select operations continue to work exactly as before. Users



Transact-SQL User’s Guide 9-5

Adaptive Server Enterprise Release 11.5.x How Views Work

who retrieve only from the new view need not even know that the
restructuring has occurred.

Unfortunately, views provide only partial logical independence.
Some data modification statements on the new titles are not allowed
because of certain restrictions.

View Examples

The first example is a view derived from the titles table. Suppose you
are interested only in books priced higher than $15 and for which an
advance of more than $5000 was paid. This straightforward select
statement would find the rows that qualify:

select *
from titles
where price > $15
  and advance > $5000

Now, suppose you have a lot of retrieval and update operations to do
on this collection of data. You could, of course, combine the
conditions shown in the previous query with any command that you
issue. However, for convenience, you can create a view in which only
the records of interest are visible:

create view hiprice
as select *
from titles
where price > $15
  and advance > $5000

When Adaptive Server receives this command, it does not actually
execute the select statement that follows the keyword as. Instead, it
stores the select statement, which is the definition of the view hiprice,
in the system table syscomments. Entries are also made in sysobjects
and in syscolumns for each column included in the view.

Now, when you display or operate on hiprice, Adaptive Server
combines your statement with the stored definition of hiprice. For
example, you can change all the prices in hiprice just as you can
change any other table:

update hiprice
set price = price * 2

Adaptive Server finds the view definition in the system tables and
converts this update command into the statement:



9-6 Views: Limiting Access to Data

Creating Views Adaptive Server Enterprise Release 11.5.x

update titles
set price = price * 2
where price > $15
  and advance > $5000

In other words, Adaptive Server knows from the view definition that
the data to be updated is in titles. It also knows that it should increase
the prices only in the rows that meet the conditions on the price and
advance columns given in the view definition and those in the update
statement.

Having issued the first update statement—the update to hiprice—you
can see its effect either in the view or in the titles table. Conversely, if
you had created the view and then issued the second update
statement, which operates directly on the base table, the changed
prices would also be visible through the view.

Updating a view’s underlying table in such a way that different rows
qualify for the view affects the view. For example, suppose you
increase the price of the book You Can Combat Computer Stress to
$25.95. Since this book now meets the qualifying conditions in the
view definition statement, it is considered part of the view.

However, if you alter the structure of a view’s underlying table by
adding columns, the new columns will not appear in a view that is
defined with a select * clause unless the view is dropped and
redefined. This is because the asterisk in the original view definition
considers only the original columns.

Creating Views

View names must be unique for each user among the already
existing tables and views. If you have set quoted_identifier on, you can
use a delimited identifier for the view. Otherwise, the view name
must follow the rules for identifiers given in “Identifiers” on page
1-6.

You can build views on other views and procedures that reference
views. You can define primary, foreign, and common keys on views.
However, you cannot associate rules, defaults, or triggers with views
or build indexes on them. Temporary views cannot be created, nor
can views be created on temporary tables.



Transact-SQL User’s Guide 9-7

Adaptive Server Enterprise Release 11.5.x Creating Views

create view Syntax

Here is the full syntax for the create view command:

create view [ owner .] view_name
[( column_name  [, column_name ]...)]
as select [distinct]  select_statement
[with check option]

As illustrated in the create view example given under “View
Examples” on page 9-5, you need not specify any column names in
the create clause of a view definition statement. Adaptive Server gives
the columns of the view the same names and datatypes as the
columns referred to in the select list of the select statement. The select
list can be designated by the asterisk (*), as in the example, or it can
be a full or partial list of the column names in the base tables.

To build views that do not contain duplicate rows, use the distinct
keyword of the select statement to ensure that each row in the view is
unique. However, distinct views cannot be updated.

It is always legal to specify column names. However, you must
specify column names in the create clause for every column in the
view if any of the following conditions are true:

• One or more of the view’s columns are derived from an
arithmetic expression, an aggregate, a built-in function, or a
constant.

• Two or more of the view’s columns would otherwise have the
same name.

This usually happens because the view definition includes a join,
and the columns being joined have the same name.

• You want to give a column in the view a different name than the
column from which it is derived.

You can also rename columns in the select statement. Whether or
not you rename a view column, it inherits the datatype of the
column from which it is derived.

Here is a view definition statement that makes the name of a column
in the view different from its name in the underlying table:

create view pub_view1 (Publisher, City, State)
as select pub_name, city, state
from publishers

Here is an alternate method of creating the same view but renaming
the columns in the select statement:



9-8 Views: Limiting Access to Data

Creating Views Adaptive Server Enterprise Release 11.5.x

create view pub_view2
as select Publisher = pub_name,
City = city, State = state
from publishers

The examples of view definition statements given in “Using the
select Statement with create view” illustrate the rest of the rules for
including column names in the create clause.

Using the select Statement with create view

The select statement in the create view statement defines the view. You
must have permission to select from any objects referenced in the
select statement of a view you are creating.

A view need not be a simple subset of the rows and columns of one
particular table. You can create a view using more than one table and
other views by using a select statement of any complexity.

There are a few restrictions on the select statements in a view
definition:

• You cannot include order by or compute clauses.

• You cannot include the into keyword.

• You cannot reference a temporary table.

View Definition with Projection

To create a view with all the rows of the titles table, but with only a
subset of its columns, type the statement:

create view titles_view
as select title, type, price, pubdate
from titles

Note that no column names are included in the create view clause. The
view titles_view will inherit the column names given in the select list.

View Definition with a Computed Column

Here is a view definition statement that creates a view with a
computed column generated from the columns price, royalty, and
total_sales:



Transact-SQL User’s Guide 9-9

Adaptive Server Enterprise Release 11.5.x Creating Views

create view accounts (title, advance, amt_due)
as select titles.title_id, advance,
(price * royalty /100) * total_sales
from titles, roysched
where price > $15
and advance > $5000
and titles.title_id = roysched.title_id
and total_sales between lorange and hirange

In this example, a list of columns must be included in the create
clause, since there is no name that can be inherited by the column
computed by multiplying together price, royalty, and total_sales. The
computed column is given the name amt_due. It must be listed in the
same position in the create clause as the expression from which it is
computed is listed in the select clause.

View Definition with an Aggregate or Built-In Function

A view definition that includes an aggregate or built-in function
must include column names in the create clause. For example:

create view categories1 (category, average_price)
as select type, avg(price)
from titles
group by type

If you create a view for security reasons, be careful when using
aggregate functions and the group by clause. The Transact-SQL
extension that does not restrict the columns you can include in the
select with group by may also cause the view to return more
information than required. For example:

create view categories2 (category, average_price)
as select type, avg(price)
from titles
where type = "business"

In the above case, you may have wanted the view to restrict its
results to “business” categories, but the results have information
about other categories. For more information about group by and this
group by Transact-SQL extension, see “Organizing Query Results into
Groups: The group by Clause” on page 3-7.

View Definition with a Join

You can create a view derived from more than one base table. Here is
an example of a view derived from both the authors and the publishers
tables. The view contains the names and cities of the authors that live



9-10 Views: Limiting Access to Data

Creating Views Adaptive Server Enterprise Release 11.5.x

in the same city as a publisher, along with each publisher’s name and
city.

create view cities (authorname, acity,
publishername, pcity)
as select au_lname, authors.city, pub_name,
publishers.city
from authors, publishers
where authors.city = publishers.city

Views Derived from Other Views

You can define a view in terms of another view, as in this example:

create view hiprice_computer
as select title, price
from hiprice
where type = "popular_comp"

distinct Views

You can ensure that the rows contained in a view are unique, as in
this example:

create view author_codes
as select distinct au_id
from titleauthor

A row is a duplicate of another row if all of its column values match
the same column values contained in another row. Two null values
are considered to be identical.

Adaptive Server applies the distinct requirement to the view’s
definition when it accesses the view for the first time, before it does
any projecting or selecting. Views look and act like any database
table. If you select a projection of the distinct view (that is, you select
only some of the view’s columns, but all of its rows), you can get
results that appear to be duplicates. However, each row in the view
itself is still unique. For example, suppose that you create a distinct
view, myview, with three columns, a, b, and c, that contains these
values:

a b c

1 1 2

1 2 3

1 1 0



Transact-SQL User’s Guide 9-11

Adaptive Server Enterprise Release 11.5.x Creating Views

When you enter this query:

select a, b from myview

the results look like this:

a    b
---  ---
1    1
1    2
1    1

(3 rows affected)

The first and third rows appear to be duplicates. However, the
underlying view’s rows are still unique.

Views That Include IDENTITY Columns

You can define a view that includes an IDENTITY column by listing
the column name, or the syb_identity keyword, in the view’s select
statement. For example:

create view sales_view
as select syb_identity, stor_id
from sales_daily

However, you cannot add a new IDENTITY column to a view by
using the identity_column_name = identity(precision) syntax.

You can select the IDENTITY column from the view using the
syb_identity keyword, unless the view:

• Selects the IDENTITY column more than once

• Computes a new column from the IDENTITY column

• Includes an aggregate function

• Joins columns from multiple tables

• Includes the IDENTITY column as part of an expression

If any of these conditions is true, Adaptive Server does not recognize
the column as an IDENTITY column with respect to the view. When
you execute the sp_help system procedure on the view, the column
displays an “Identity” value of 0.

In the following example, the row_id column is not recognized as an
IDENTITY column with respect to the store_discounts view because
store_discounts joins columns from two tables:



9-12 Views: Limiting Access to Data

Creating Views Adaptive Server Enterprise Release 11.5.x

create view store_discounts
as
select stor_name, discount
from stores, new_discounts
where stores.stor_id = new_discounts.stor_id

When you define the view, the underlying column retains the
IDENTITY property. When you update a row through the view, you
cannot specify a new value for the IDENTITY column. When you
insert a row through the view, Adaptive Server generates a new,
sequential value for the IDENTITY column. Only the table owner,
Database Owner, or System Administrator can explicitly insert a
value into the IDENTITY column after setting identity_insert on for the
column’s base table.

After Creating a View

After you create a view, the source text describing the view is stored
in the text column of the syscomments system table. In previous
releases of SQL Server, users often deleted the source text from
syscomments, in order to save disk space and remove confidential
information from this public area. Do not remove this information
from syscomments; doing so can cause problems for future upgrades
of Adaptive Server. Instead, encrypt the text in syscomments by using
the sp_hidetext system procedure, described in the Adaptive Server
Reference Manual. For more information, see “Compiled Objects” on
page 1-3.

Validating a View’s Selection Criteria Using with check option

Normally, Adaptive Server does not check insert and update
statements on views to determine whether the affected rows are
within the scope of the view. A statement can insert a row into the
underlying base table, but not into the view, or change an existing
row so that it no longer meets the view’s selection criteria.

When you create a view using the with check option clause, each insert
and update through the view, is validated against the view’s selection
criteria. All rows inserted or updated through the view must remain
visible through the view, or the statement fails.

Here is an example of a view, stores_ca, created using with check option.
This view includes information about stores located in California,
but excludes information about stores located in any other state. The



Transact-SQL User’s Guide 9-13

Adaptive Server Enterprise Release 11.5.x Creating Views

view is created by selecting all rows from the stores table for which
state has a value of “CA”:

create view stores_ca
as select * from stores
where state = "CA"
with check option

When you try to insert a row through stores_ca, Adaptive Server
verifies that the new row falls within the scope of the view. The
following insert statement fails because the new row would have a
state value of “NY”, rather than “CA”:

insert stores_ca
values ("7100", "Castle Books", "351 West 24 St.",
"New York", "NY", "USA", "10011", "Net 30")

When you try to update a row through stores_cal, Adaptive Server
verifies that the update will not cause the row to disappear from the
view. The following update statement fails because it would change
the value of state from “CA” to “MA”. After the update, the row
would no longer be visible through the view.

update stores_ca
set state = "CA"
where stor_id = "7066"

Views Derived from Other Views

When a view is created using with check option, all views derived from
the “base” view must satisfy its check option. Each row inserted
through the derived view must be visible through the base view.
Each row updated through the derived view must remain visible
through the base view.

Consider the view stores_cal30, which is derived from stores_cal. The
new view includes information about stores in California with
payment terms of “Net 30”:

create view stores_cal30
as select * from stores_ca
where payterms = "Net 30"

Because stores_cal was created using with check option, all rows inserted
or updated through stores_cal30 must be visible through stores_cal.
Any row with a state value other than “CA” is rejected.

Notice that stores_cal30 does not have a with check option clause of its
own. This means that it is possible to insert or update a row with a
payterms value other than “Net 30” through stores_cal30. The



9-14 Views: Limiting Access to Data

Retrieving Data Through Views Adaptive Server Enterprise Release 11.5.x

following update statement would be successful, even though the row
would no longer be visible through stores_cal30:

update stores_cal30
set payterms = "Net 60"
where stor_id = "7067"

Retrieving Data Through Views

When you retrieve data through a view, Adaptive Server checks to
make sure that all the database objects referenced anywhere in the
statement exist and that they are valid in the context of the statement.
If the checks are successful, Adaptive Server combines the statement
with the stored definition of the view and translates it into a query on
the view’s underlying tables, as explained in an earlier section. This
process is called view resolution.

Consider the following view definition statement and a query
against it:

create view hiprice
as select *
from titles
where price > $15
and advance > $5000

select title, type
from hiprice
where type = "popular_comp"

Internally, Adaptive Server combines the query of hiprice with its
definition, converting the query to:

select title, type
from titles
where price > $15
and advance > $5000
and type = "popular_comp"

In general, you can query any view in any way just as if it were a real
table. You can use joins, group by clauses, subqueries, and other query
techniques on views, in any combination. Note, however, that if the
view is defined with an outer join or aggregate function, you may get
unexpected results when you query the view. See “Views Derived
from Other Views” on page 9-10.



Transact-SQL User’s Guide 9-15

Adaptive Server Enterprise Release 11.5.x Retrieving Data Through Views

➤ Note
You can use select on text and image columns in views. However, you

cannot use the readtext and writetext commands in views.

View Resolution

When you define a view, Adaptive Server checks to make sure that
all the tables or views listed in the from clause exist. Similar checks are
performed when you query through the view.

Between the time a view is defined and the time it is used in a
statement, things can change. For example, one or more of the tables
or views listed in the from clause of the view definition may have been
dropped. Or one or more of the columns listed in the select clause of
the view definition may have been renamed.

To fully resolve a view, Adaptive Server checks to make sure that:

• All the tables, views, and columns from which the view was
derived still exist.

• The datatype of each column on which a view column depends
has not been changed to an incompatible type.

• If the statement is an update, insert, or delete, it does not violate the
restrictions on modifying views. These are discussed under
“Modifying Data Through Views” on page 9-17.

If any of these checks fails, Adaptive Server issues an error message.

Redefining Views

Unlike many other database management systems, Adaptive Server
allows you to redefine a view without forcing you to redefine other
views that depend on it, unless the redefinition makes it impossible
for Adaptive Server to translate the dependent view.

As an example, the authors table and three possible views are shown
below. Each succeeding view is defined using the view that preceded
it: view2 is created from view1, and view3 is created from view2. In this
way, view2 depends on view1 and view3 depends on both the
preceding views.

Each view name is followed by the select statement used to create it.



9-16 Views: Limiting Access to Data

Retrieving Data Through Views Adaptive Server Enterprise Release 11.5.x

view1:

create view view1
as select au_lname, phone
from authors
where postalcode like "94%"

view2:

create view view2
as select au_lname, phone
from view1
where au_lname like "[M-Z]%"

view3:

create view view3
as select au_lname, phone
from view2
where au_lname = "MacFeather"

The authors table on which these views are based consists of these
columns: au_id, au_lname, au_fname, phone, address, city, state, and
postalcode.

You can drop view2 and replace it with another view, also named
view2, that contains slightly different selection criteria, such as:

create view view2
as select au_lname, phone
from view3
where au_lname like "[M-P]"

view3, which depends on view2, is still valid and need not be
redefined. When you use a query that references either view2 or
view3, view resolution takes place as usual.

If you redefine view2 so that view3 cannot be derived from it, view3
becomes invalid. For example, if another new version of view2
contains a single column, au_lname, rather than the two columns that
view3 expects, view3 can no longer be used because it cannot derive
the phone column from the object on which it depends.

However, view3 still exists and you can use it again by dropping the
offending view2 and re-creating view2 with both the au_lname and the
phone columns.

In short, you can change the definition of an intermediate view
without affecting dependent views as long as the select list of the
dependent views remains valid. If this rule is violated, a query that
references the invalid view will produce an error message.



Transact-SQL User’s Guide 9-17

Adaptive Server Enterprise Release 11.5.x Modifying Data Through Views

Renaming Views

You can rename a view with the system procedure sp_rename. Its
syntax is:

sp_rename objname , newname

For example, to rename titleview to bookview, enter:

sp_rename titleview, bookview

Follow these conventions when renaming views:

• Make sure the new name follows the rules used for identifiers
discussed under “Identifiers” on page 1-6. (You cannot use
sp_rename to specify a new, delimited identifier for a view.)

• You can change the name only of views that you own. The
Database Owner can change the name of any user’s view.

• Make sure the view is in the current database.

Altering or Dropping Underlying Objects

You can change the name of a view’s underlying objects. For
example, if a view references a table entitled new_sales, and you
rename that table to old_sales, the view will work on the renamed
table.

However, if a table referenced by a view has been dropped, and
someone tries to use the view, Adaptive Server produces an error
message. If a new table or view is created to replace the one that was
dropped, the view will again become usable.

If you define a view with a select * clause, and then alter the structure
of its underlying tables by adding columns, the new columns will
not appear. This is because the asterisk shorthand is interpreted and
expanded when the view is first created. To see the new columns
through the view, drop the view and re-create it.

Modifying Data Through Views

Although Adaptive Server places no restrictions on retrieving data
through views, and although Transact-SQL places fewer restrictions
on modifying data through views than other versions of SQL, the
following rules apply to various data modification operations:



9-18 Views: Limiting Access to Data

Modifying Data Through Views Adaptive Server Enterprise Release 11.5.x

• update, insert, or delete operations that refer to any column in the
view that is a computation, that is, a computed column or a built-
in function, are not allowed.

• update, insert, or delete operations that refer to a view that includes
aggregates or row aggregates, that is, built-in functions and a
group by clause or a compute clause, are not allowed.

• insert, delete, and update operations that refer to a distinct view are not
allowed.

• insert statements are not allowed unless all NOT NULL columns
in the underlying tables or views are included in the view
through which you are inserting new rows. Adaptive Server has
no way to supply values for NOT NULL columns in the
underlying objects.

• If a view has a with check option clause, all rows inserted or updated
through the view (or through any derived views) must satisfy the
view’s selection criteria.

• delete statements are not allowed on multitable views.

• insert statements are not allowed on multitable views created with
the with check option clause.

• update statements are allowed on multitable views there with check
option is used. The update fails if any of the affected columns
appears in the where clause, in an expression that includes
columns from more than one table.

• insert and update statements are not allowed on multitable distinct
views.

• update statements cannot specify a value for an IDENTITY
column. The table owner, Database Owner, or a System
Administrator can insert an explicit value into an IDENTITY
column after setting identity_insert on for the column’s base table.

• If you insert or update a row through a multitable view, all
affected columns must belong to the same base table.

• writetext is not allowed on the text and image columns in a view.

When you attempt an update, insert, or delete for a view, Adaptive
Server checks to make sure that none of the above restrictions is
violated and that no data integrity rules are violated.



Transact-SQL User’s Guide 9-19

Adaptive Server Enterprise Release 11.5.x Modifying Data Through Views

Restrictions on Updating Views

Why can some views be updated and some cannot? You can best
understand the restrictions by seeing examples of views that cannot
be updated.

Restrictions on updated views apply to the following areas:

• Computed columns in a view definition

• group by or compute in a view definition

• Null values in underlying objects

• Views created using with check option

• Multitable views

• Views with IDENTITY columns

Computed Columns in a View Definition

This restriction applies to columns of views that are derived from
computed columns or built-in functions. For example, the amt_due
column in the view accounts, is a computed column.

create view accounts (title_id, advance, amt_due)
as select titles.title_id, advance,
(price * royalty/100) * total_sales
from titles, roysched
where price > $15
  and advance > $5000
and titles.title_id = roysched.title_id
and total_sales between lorange and hirange

The rows visible through accounts are:

select * from accounts

title_id     advance     amt_due
--------     --------    ---------
PC1035       7,000.00    32,240.16
PC8888       8,000.00     8,190.00
PS1372       7,000.00       809.63
TC3218       7,000.00       785.63

(4 rows affected)

updates and inserts to the amt_due column are not allowed because
there is no way to deduce the underlying values for price, royalty, or
year-to-date sales from any value you might enter in the amt_due



9-20 Views: Limiting Access to Data

Modifying Data Through Views Adaptive Server Enterprise Release 11.5.x

column. delete operations do not make sense because there is no
underlying value to delete.

group by or compute in a View Definition

This restriction applies to all columns in views that contain aggregate
values—that is, views whose definition includes a group by or compute
clause. Here is a view defined with a group by clause and the rows seen
through it:

create view categories (category, average_price)
as select type, avg(price)
from titles
group by type

select * from categories

category         average_price
-------------    -------------
UNDECIDED                 NULL
business                 13.73
mod_cook                 11.49
popular_comp             21.48
psychology               13.50
trad_cook                15.96

(6 rows affected)

It would not make sense to insert rows into the view categories. To
what group of underlying rows would an inserted row belong?
Updates on the average_price column are not allowed because there is
no way to know from any value you might enter there how the
underlying prices should be changed.

Theoretically, updates to the category column and deletes could be
allowed, but Adaptive Server does not support them.

Null Values in Underlying Objects

This restriction applies to insert statements when some NOT NULL
columns are contained in the tables or views from which the view is
derived.

For example, suppose null values are not allowed in a column of a
table that underlies a view. Normally, when you insert new rows
through a view, any columns in underlying tables that are not
included in the view are given null values. If null values are not



Transact-SQL User’s Guide 9-21

Adaptive Server Enterprise Release 11.5.x Modifying Data Through Views

allowed in one or more of these columns, no inserts can be allowed
through the view.

Consider the view:

create view business_titles
as select title_id, price, total_sales
from titles
where type = "business"

Null values are not allowed in the title column of the underlying
table titles, so no insert statements can be allowed through
business_view. Although the title column does not even exist in the
view, its prohibition of null values makes any inserts into the view
illegal.

Similarly, if the title_id column has a unique index, updates or inserts
that would duplicate any values in the underlying table are rejected,
even if the entry does not duplicate any value in the view.

Views Created Using with check option

This restriction determines what types of modifications you can
make through views with check options. If a view has a with check
option clause, each row inserted or updated through the view must be
visible within the view. This is true whether you insert or update the
view directly or indirectly, through another derived view.

Multitable Views

This restriction determines what types of modifications you can
make through views that join columns from multiple tables.
Adaptive Server prohibits delete statements on multitable views, but
allows update and insert statements that would not be allowed in other
systems.

You can insert or update a multitable view if:

• The view has no with check option clause.

• All columns being inserted or updated belong to the same base
table.

For example, consider the following view, which includes columns
from both titles and publishers and has no with check option clause:

create view multitable_view
as select title, type, titles.pub_id, state
from titles, publishers
where titles.pub_id = publishers.pub_id



9-22 Views: Limiting Access to Data

Dropping Views Adaptive Server Enterprise Release 11.5.x

A single insert or update statement can specify values either for the
columns from titles or for the column from publishers. The following
update statement succeeds:

update multitable_view
set type = "user_friendly"
where type = "popular_comp"

But the statement below fails because it affects columns from both
titles and publishers:

update multitable_view
set type = "cooking_trad",
state = "WA"
where type = "trad_cook"

Views with IDENTITY Columns

This restriction determines what types of modifications you can
make to views that include IDENTITY columns. By definition,
IDENTITY columns are not updatable. Updates through a view
cannot specify an IDENTITY column value.

Inserts to IDENTITY columns are restricted to the following people:

• The table owner

• The Database Owner or the System Administrator if the table
owner has granted them permission

• The Database Owner or the System Administrator if he or she
impersonates the table owner by using the setuser command.

To enable such inserts through a view, use set identity_insert on for the
column’s base table. It is not sufficient to use set identity_insert on for the
view through which you are inserting.

Dropping Views

To delete a view from the database, use the drop view command. The
syntax is:

drop view [ owner .] view_name  [, [ owner .] view_name ]...

As indicated, you can drop more than one view at a time. Only its
owner (or the database owner) can drop a view.

Here is how to drop the view hiprice:

drop view hiprice



Transact-SQL User’s Guide 9-23

Adaptive Server Enterprise Release 11.5.x Using Views As Security Mechanisms

When you issue the drop view command, information about the view
is deleted from the system tables sysprocedures, sysobjects, syscolumns,
syscomments, sysprotects, and sysdepends. All privileges on that view
are also deleted.

If a view depends on a table or on another view that has been
dropped, Adaptive Server returns an error message if anyone tries to
use the view. If a new table or view is created to replace the one that
has been dropped, and if it has the same name as the dropped table
or view, the view again becomes usable, as long as the columns
referenced in the view definition exist.

Using Views As Security Mechanisms

Permission to access the subset of data in a view must be explicitly
granted or revoked, regardless of the permissions in force on the
view’s underlying tables. Data in an underlying table that is not
included in the view is hidden from users who are authorized to
access the view but not the underlying table.

For example, you may not want some users to access the columns
that have to do with money and sales in the titles table. You can create
a view of the titles table that omits those columns, and then give all
users permission on the view, and give only the Sales Department
permission on the table. For example:

revoke all on titles to public

grant all on bookview to public

grant all on titles to sales

For information about how to grant or revoke permissions, see the
Security Features User’s Guide.

Getting Information About Views

System procedures, catalog stored procedures, and Adaptive Server
built-in functions provide information from the system tables about
views.

For complete information about system procedures, see the Adaptive
Server Reference Manual.



9-24 Views: Limiting Access to Data

Getting Information About Views Adaptive Server Enterprise Release 11.5.x

Getting Help on Views with sp_help

You can get a report on a view with the system procedure sp_help. For
example:

sp_help hiprice

Name           Owner   type
---------      ------  -----
hiprice        dbo     view

(1 row affected)

Data_located_on_segment        When_created
------------------------------ --------------------
not applicable                 July 7 1997 11:57AM

Column_name  Type Length   Precision Scale
-----------     -------  ------   ---------   -----
title_id        tid         6         NULL    NULL
title           varchar    80         NULL    NULL
type            char       12         NULL    NULL
pub_id          char        4         NULL    NULL
price           money       8         NULL    NULL
advance         money       8         NULL    NULL
total_sales     int         4         NULL    NULL
notes           varchar   200         NULL    NULL
pubdate         datetime    8         NULL    NULL
contract        bit         1         NULL    NULL

Nulls Default_name Rule_name    Identity
------     ------------ ---------    --------
0          NULL             NULL            0
0          NULL             NULL            0
0          NULL             NULL            0
1          NULL             NULL            0
1          NULL             NULL            0
1          NULL             NULL 0
1          NULL             NULL            0
1          NULL             NULL            0
0          NULL             NULL            0
0          NULL             NULL            0

No defined keys for this object.

(return status = 0)



Transact-SQL User’s Guide 9-25

Adaptive Server Enterprise Release 11.5.x Getting Information About Views

Using sp_helptext to Display View Information

The System Security Officer must reset the allow select on
syscomments.text column configuration parameter, in the evaluated
configuration. (See evaluated configuration in the Glossary for more
information.) When this happens, you must be the creator of the
view or a System Administrator to view the text of a view through
sp_helptext.

To display the text of the create view statement, execute the system
procedure sp_helptext:

sp_helptext hiprice

----------
        1

(1 row affected)

text
--------------------------------------------
create view hiprice
as select *
from titles
where price > $15 and advance > $5000

(1 row affected, return status = 0)

If the source text of a view was encrypted using sp_hidetext, Adaptive
Server displays a message advising you that the text is hidden. For
information about hiding source text, see sp_hidetext in the Adaptive
Server Reference Manual.

Using sp_depends to List Dependent Objects

The system procedure sp_depends lists all the objects that the view or
table references in the current database, and it lists all the objects that
reference that view or table. Here is an example:

sp_depends titles

Things inside the current database that reference
the object.



9-26 Views: Limiting Access to Data

Getting Information About Views Adaptive Server Enterprise Release 11.5.x

object               type
-------------        ---------------------------
dbo.history_proc     stored procedure
dbo.title_proc       stored procedure
dbo.titleid_proc     stored procedure
dbo.deltitle         trigger
dbo.totalsales_trig  trigger
dbo.accounts         view
dbo.bookview         view
dbo.categories       view
dbo.hiprice          view
dbo.multitable_view  view
dbo.titleview        view

(return status = 0)

Listing All Views in a Database

The catalog stored procedure sp_tables lists all views in a database
when used in the following format:

sp_tables @table_type = "'VIEW'"

Finding an Object Name and ID

The system functions object_id() and object_name() identify the ID and
name of a view. For example:

select object_id("titleview")

----------
 480004741

Object names and IDs are stored in the sysobjects table.



Part 2: Advanced
Topics





Transact-SQL User’s Guide 10-1

10 Using the Built-In Functions in
Queries 10.

Built-in functions, a Transact-SQL extension to SQL, return
information from the database. You can use built-in functions in the
select list, in the where clause, or anywhere an expression is allowed.
You can also use them as part of a stored procedure or program.

This chapter discusses:

• System Functions That Return Database Information   10-1

• String Functions Used for Character Strings or Expressions   10-7

• Text Functions Used for text and image Data   10-17

• Aggregate Functions   10-19

• Mathematical Functions   10-20

• Date Functions   10-24

• Datatype Conversion Functions   10-30

• Security Functions   10-41

For reference material on the built-in functions, see Chapter 2,
“Transact-SQL Functions,” in the Adaptive Server Reference Manual.

System Functions That Return Database Information

The system functions return special information from the database.
Many of them provide a shorthand way of querying the system
tables.

The general syntax of the system functions is:

select function_name ( argument [ s])

You can use the system functions in the select list, in the where clause,
and anywhere an expression is allowed.

For example, to find the user identification number of your coworker
who logs in as “harold,” type:

select user_id("harold")

Assuming that “harold”’s user ID is 13, the result is:

-------------
           13

(1 row affected)



10-2 Using the Built-In Functions in Queries

System Functions That Return Database Information Adaptive Server Enterprise Release 11.5.x

Generally, the name of the function tells you what kind of
information is returned.

The system function user_name takes an ID number as its argument
and returns the user’s name:

select user_name(13)

---------
harold

(1 row affected)

To find the name of the current user, that is, your name, the argument
is omitted:

select user_name()

---------
dbo

(1 row affected)

Adaptive Server handles userids as follows:

• The System Administrator becomes the Database Owner in any
database he or she is using by assuming the server user ID 1.

• A “guest” user is always given the server user ID -1.

• Inside a database, the user_name of the Database Owner is always
“dbo”; his or her user ID is 1.

• Inside a database, the “guest” user ID is always 2.

Table 10-1 lists the name of each system function, the argument it
takes, and the result it returns.

Table 10-1: System functions, arguments, and results

Function Argument Result

col_name (object_id, column_id
[, database_id])

Returns the column name.

col_length (object_name, column_name) Returns the defined length of column. Use
datalength to see the actual data size.

curunreservedpgs (dbid, lstart, unreservedpgs) Returns the number of free pages in a disk
piece. If the database is open, the value is
taken from memory; if the database is not in
use, the value is taken from the unreservedpgs
column in sysusages.



Transact-SQL User’s Guide 10-3

Adaptive Server Enterprise Release 11.5.x System Functions That Return Database Information

data_pgs (object_id, {doampg | ioampg}) Returns the number of pages used by the table
(doampg) or index (ioampg). The result does not
include pages used for internal structures. Use
the function in a query run against the
sysindexes table.

datalength (expression) Returns the length of expression in bytes.
expression is usually a column name. If
expression is a character constant, it must be
enclosed in quotes.

db_id ([database_name]) Returns the database ID number.
database_name must be a character expression;
if it is a constant expression, it must be
enclosed in quotes. If no database_name is
supplied, db_id returns the ID number of the
current database.

db_name ([database_id]) Returns the database name. database_id must
be a numeric expression. If no database_id is
supplied, db_name returns the name of the
current database.

host_id ( ) Returns the host process ID of the client
process (not the Adaptive Server process).

host_name ( ) Returns the current host computer name of
the client process (not the Adaptive Server
process).

index_col (object_name, index_id, key_#
[, user_id])

Returns the name of the indexed column;
returns NULL if object_name is not a table or
view name.

isnull (expression1, expression2) Substitutes the value specified in expression2
when expression1 evaluates to NULL.The
datatypes of the expressions must convert
implicitly, or you must use the convert
function.

Table 10-1: System functions, arguments, and results (continued)

Function Argument Result



10-4 Using the Built-In Functions in Queries

System Functions That Return Database Information Adaptive Server Enterprise Release 11.5.x

lct_admin ({{ "lastchance" | "logfull" |
"unsuspend"} , database_id} |
"reserve", log_pages})

Manages the log segment’s last-chance
threshold.

lastchance creates a last-chance threshold in
the specified database.

logfull returns 1 if the last-chance threshold has
been crossed in the specified database or 0 if it
has not.

unsuspend awakens suspended tasks in the
database and disables the last-chance
threshold if that threshold has been crossed.

reserve returns the number of free log pages
required to successfully dump a transaction
log of the specified size.

object_id (object_name) Returns the object ID.

object_name (object_id[, database_id]) Returns the object name.

reserved_pgs (object_id, {doampg|ioampg}) Returns the number of pages allocated to table
or index. This function does report pages used
for internal structures.

rowcnt (doampg) Returns the number of rows in a table
(estimate).

suser_id ([server_user_name]) Returns the server user’s ID number from
syslogins. If no server_user_name is supplied, it
returns the server ID of the current user.

suser_name ([server_user_id]) Returns the server user’s name. Server user’s
IDs are stored in syslogins. If no server_user_id
is supplied, it returns the name of the current
user.

tsequal (timestamp, timestamp2) Compares timestamp values to prevent update
on a row that has been modified since it was
selected for browsing. timestamp is the
timestamp of the browsed row; timestamp2 is
the timestamp of the stored row. Allows you
to use browse mode without calling DB-
Library.

used_pgs (object_id, doampg, ioampg) Returns the total number of pages used by a
table and its clustered index.

user Returns the user’s name.

Table 10-1: System functions, arguments, and results (continued)

Function Argument Result



Transact-SQL User’s Guide 10-5

Adaptive Server Enterprise Release 11.5.x System Functions That Return Database Information

When the argument to a system function is optional, the current
database, host computer, server user, or database user is assumed.
With the exception of user, built-in functions are always used with
parentheses, even if the argument is NULL.

Examples of Using System Functions

The examples in this section use the following system functions:

• col_length

• datalength

• isnull

• user_name

col_length

This query finds the length of the title column in the titles table (the
“x=” is included so that the result has a column heading):

select x = col_length("titles", "title")

user_id ([user_name]) Returns the user’s ID number. Reports the
number from sysusers in the current database.
If no user_name is supplied, it returns the ID of
the current user.

user_name ([user_id]) Returns the user’s name, based on the user’s
ID in the current database. If no user_id is
supplied, it returns the name of the current
user.

valid_name (character_expression) Returns 0 if the character expression is not a
valid identifier (illegal characters or more
than 30 bytes long), or a number other than 0
if it is a valid identifier.

valid_user (server_user_id) Returns 1 if the specified ID is a valid user or
alias in at least one database on this Adaptive
Server. You must have the sa_role or sso_role
role to use this function on a server_user_id
other than your own.

Table 10-1: System functions, arguments, and results (continued)

Function Argument Result



10-6 Using the Built-In Functions in Queries

System Functions That Return Database Information Adaptive Server Enterprise Release 11.5.x

 x
--------
      80

 (1 row affected)

datalength

In contrast to col_length, which finds the defined length of a column,
datalength reports the actual length, in bytes, of the data stored in each
row. Use this function on varchar, nvarchar, varbinary, text, and image
datatypes, since they can store variable lengths and do not store
trailing blanks. datalength of any NULL data returns NULL. When a
char value is declared to allow NULLS, Adaptive Server stores it
internally as a varchar. All other datatypes report their defined
length. Here is an example that finds the length of the pub_name
column in the publishers table:

select Length = datalength(pub_name), pub_name
from publishers

Length  pub_name
------  ------------------------
13      New Age Books
16      Binnet & Hardley
20      Algodata Infosystems

(3 rows affected)

isnull

This query finds the average of the prices of all titles, substituting the
value ‘’$10.00’’ for all NULL entries in price:

select avg(isnull(price,$10.00))
from titles

------------
       14.24

(1 row affected)

user_name

This query finds the row in sysusers where the name is equal to the
result of applying the system function user_name to user ID 1:



Transact-SQL User’s Guide 10-7

Adaptive Server Enterprise Release 11.5.x String Functions Used for Character Strings or Expressions

select name
from sysusers
where name = user_name(1)

name
------------------------
dbo

(1 row affected)

String Functions Used for Character Strings or Expressions

String functions are used for various operations on character strings
or expressions. A few string functions can be used on binary data as
well as on character data. You can also concatenate binary data or
character strings or expressions.

String built-in functions return values commonly needed for
operations on character data. String function names are not
keywords.

The syntax for string functions takes the general form:

select function_name ( arguments )

You can concatenate binary or character expressions like this:

select ( expression  + expression  [+ expression ]...)

When concatenating noncharacter, nonbinary expressions, you must
use the convert function:

select "The price is " + convert(varchar(12),price)
from titles

Most string functions can be used only on char, nchar, varchar, and
nvarchar datatypes and on datatypes that implicitly convert to char or
varchar. A few string functions can also be used on binary and
varbinary data. patindex can be used on text, char, nchar, varchar, and
nvarchar columns.

You can concatenate binary and varbinary columns and char, nchar,
varchar, and nvarchar columns. However, you cannot concatenate text
or image columns.

You can nest string functions and use them anywhere an expression
is allowed. When you use constants with a string function, enclose
them in single or double quotes.

Each function also accepts arguments that can be implicitly
converted to the specified type. For example, functions that accept



10-8 Using the Built-In Functions in Queries

String Functions Used for Character Strings or Expressions Adaptive Server Enterprise Release 11.5.x

approximate numeric expressions also accept integer expressions.
Adaptive Server automatically converts the argument to the desired
type.

Table 10-2 lists the arguments used in string functions. If a function
takes more than one expression of the same type, the arguments are
numbered char_expr1, char_expr2, and so on.

Table 10-3 lists function names, arguments, and results.

Table 10-2: Arguments used in string functions

Argument Type Can Be Replaced By

char_expr A character-type column name, variable, or constant
expression of char, varchar, nchar, or nvarchar type.
Functions that accept text column names are noted in
the explanation. Constant expressions must be
enclosed in quotation marks.

expression A binary or character column name, variable or
constant expression. Can be char, varchar, nchar, or
nvarchar data, as for char_expr, plus binary or varbinary.

pattern A character expression of char, nchar, varchar, or
nvarchar datatype that may include any of the pattern-
matching wildcards supported by Adaptive Server.

approx_numeric Any approximate numeric (float, real, or double
precision) column name, variable, or constant
expression.

integer_expr Any integer (such as tinyint, smallint or int), column
name, variable, or constant expression. Maximum size
ranges are noted, as they apply.

start An integer_expr.

length An integer_expr.

Table 10-3: String functions, arguments and results

Function Argument Result

ascii (char_expr) Returns the ASCII code for the first character in the
expression.

char (integer_expr) Converts a single-byte integer value to a character value. char
is usually used as the inverse of ascii. integer_expr must be
between 0 and 255. Returns a char datatype. If the resulting
value is the first byte of a multibyte character, the character
may be undefined.



Transact-SQL User’s Guide 10-9

Adaptive Server Enterprise Release 11.5.x String Functions Used for Character Strings or Expressions

charindex (expression1,
expression2)

Searches expression2 for the first occurrence of expression1 and
returns an integer representing its starting position. If
expression1 is not found, returns 0. If expression1 contains
wildcard characters, charindex treats them as literals.

char_length (char_expr) Returns an integer representing the number of characters in a
character expression or text value. For variable-length data in
a table column, char_length strips the expression of trailing
blanks before counting the number of characters. For
multibyte character sets, the number of characters in the
expression is usually less than the number of bytes; use the
system function datalength to determine the number of bytes.

difference (char_expr1,
char_expr2)

Returns an integer representing the difference between two
soundex values. See soundex, below.

lower (char_expr) Converts uppercase to lowercase. Returns a character value.

ltrim (char_expr) Removes leading blanks from the character expression. Only
values equivalent to the space character in the SQL special
character specification are removed.

patindex (“%pattern%”,
char_expr [using {bytes
| chars | characters}] )

Returns an integer representing the starting position of the
first occurrence of pattern in the specified character
expression, returns 0 if pattern is not found. By default,
patindex returns the offset in characters. To return the offset in
bytes, that is, multibyte character strings, specify using bytes.
The % wildcard character must precede and follow pattern,
except when searching for first or last characters. See
“Character Strings in Query Results” on page 2-8 for a
description of the wildcard characters that can be used in
pattern. patindex be used on text data.

replicate (char_expr,
integer_expr)

Returns a string with the same datatype as char_expr,
containing the same expression repeated the specified
number of times or as many times as will fit into a 255-byte
space, whichever is less.

reverse (expression) Returns the reverse of the character or binary expression; if
expression is “abcd”, it returns “dcba”; if expression is
0x12345000, returns 0x00503412.

right (expression,
integer_expr)

Returns the part of the character or binary expression
starting at the specified number of characters from the right.
Return value has the same datatype as the character
expression.

rtrim (char_expr) Removes trailing blanks. Only values equivalent to the space
character in the SQL special character definition are
removed.

Table 10-3: String functions, arguments and results (continued)

Function Argument Result



10-10 Using the Built-In Functions in Queries

String Functions Used for Character Strings or Expressions Adaptive Server Enterprise Release 11.5.x

Examples of Using String Functions

The examples in this section use the following system functions:

• charindex, patindex

• str

• stuff

• soundex, difference

• substring

charindex, patindex

The charindex and patindex functions return the starting position of a
pattern you specify. Both take two arguments, but they work slightly
differently, since patindex can use wildcard characters, but charindex
cannot. charindex can be used only on char, nchar, varchar, nvarchar,

soundex (char_expr) Returns a 4-character soundex code for character strings that
are composed of a contiguous sequence of valid single- or
double-byte Roman letters.

space (integer_expr) Returns a string with the indicated number of single-byte
spaces.

str (approx_numeric
[, length [, decimal] ])

Returns a character representation of the floating point
number. length sets the number of characters to be returned
(including the decimal point, all digits to the right and left of
the decimal point, and blanks); decimal sets the number of
decimal digits to be returned.

length and decimal are optional. If given, they must be
nonnegative. Default length is 10; default decimal is 0. str
rounds the decimal portion of the number so that the results
fit within the specified length.

stuff (char_expr1, start,
length, char_expr2)

Delete length characters from char_expr1 at start, and then
insert char_expr2 into char_expr1 at start. To delete characters
without inserting other characters, char_expr2 should be
NULL, not ” ”, which indicates a single space.

substring (expression, start,
length)

Returns part of a character or binary string. start specifies the
character position at which the substring begins. length
specifies the number of characters in the substring.

upper (char_expr) Converts lowercase to uppercase. Returns a character value.

Table 10-3: String functions, arguments and results (continued)

Function Argument Result



Transact-SQL User’s Guide 10-11

Adaptive Server Enterprise Release 11.5.x String Functions Used for Character Strings or Expressions

binary, and varbinary columns; patindex works on char, nchar, varchar,
nvarchar, and text columns.

Both functions take two arguments. The first is the pattern whose
position you want. With patindex, you must include percent signs
before and after the pattern, unless you are looking for the pattern as
the first (omit the preceding %) or last (omit the trailing %) characters
in a column. For charindex, the pattern cannot include wildcard
characters. The second argument is a character expression, usually a
column name, in which Adaptive Server searches for the specified
pattern.

To find the position at which the pattern “wonderful” begins in a
certain row of the notes column of the titles table, using both
functions, type this query:

select charindex("wonderful", notes),
    patindex("%wonderful%", notes)
from titles
where title_id = "TC3218"

------------- -------------
   46            46

(1 row affected)

If you do not restrict the rows to be searched, the query returns all
rows in the table and reports zero values for those rows that do not
contain the pattern. In the following example, patindex finds all the
rows in sysobjects that start with “sys” and whose fourth character is
“a”, “b”, “c”, or “d”:

select name
from sysobjects
where patindex("sys[a-d]%", name) > 0

name
------------------------------
sysalternates
sysattributes
syscolumns
syscomments
sysconstraints
sysdepends

(6 rows affected)



10-12 Using the Built-In Functions in Queries

String Functions Used for Character Strings or Expressions Adaptive Server Enterprise Release 11.5.x

str

The str function converts numbers to characters, with optional
arguments for specifying the length of the number (including sign,
decimal point, and digits to the right and left of the decimal point),
and the number of places after the decimal point.

Set length and decimal arguments to str positive. The default length
is 10. The default decimal is 0. The length should be long enough to
accommodate the decimal point and the number’s sign. The decimal
portion of the result is rounded to fit within the specified length. If
the integer portion of the number does not fit within the length,
however, str returns a row of asterisks of the specified length.

For example:

select str(123.456, 2, 4)

--
**

(1 row affected)

A short approx_numeric is right-justified in the specified length, and a
long approx_numeric is truncated to the specified number of decimal
places.

stuff

The stuff function inserts a string into another string. It deletes a
specified length of characters in expr1 at the start position. It then
inserts expr2 string into expr1 string at the start position. If the start
position or the length is negative, a NULL string is returned.

If the start position is longer than expr1, a NULL string is returned. If
the length to delete is longer than expr1, it is deleted through the last
character in expr1. For example:

select stuff("abc", 2, 3, "xyz")

----
axyz

(1 row affected)

To use stuff to delete a character, replace expr2 with NULL, not with
empty quotation marks. Using “ ” to specify a null character replaces
it with a space.

select stuff("abcdef", 2, 3, null)



Transact-SQL User’s Guide 10-13

Adaptive Server Enterprise Release 11.5.x String Functions Used for Character Strings or Expressions

---
aef

(1 row affected)

select stuff("abcdef", 2, 3, "")

----
a ef

(1 row affected)

soundex, difference

The soundex function converts a character string to a 4-digit code for
use in a comparison. It ignores vowels in the comparison.
Nonalphabetic characters terminate the soundex evaluation. This
function always returns some value. These two names have identical
soundex codes:

select soundex ("smith"), soundex ("smythe")

----- -----
S530  S530

The difference function compares the soundex values of two strings and
evaluates the similarity between them, returning a value from 0 to 4.
A value of 4 is the best match. For example:

select difference("smithers", "smothers")

---------
       4

(1 row affected)

select difference("smothers", "brothers")

 ---------
        2

(1 row affected)



10-14 Using the Built-In Functions in Queries

String Functions Used for Character Strings or Expressions Adaptive Server Enterprise Release 11.5.x

Most of the remaining string functions are easy to use and to
understand. For example:

substring

The following example uses the substring function. It displays the last
name and first initial of each author, for example, “Bennet A“.

select au_lname, substring(au_fname, 1, 1)
from authors

The substring function does what its name implies—it returns a
portion of a character or binary string.

The substring function always takes three arguments. The first can be
a character or binary string, a column name, or a string-valued
expression that includes a column name. The second argument
specifies the position at which the substring should begin. The third
specifies the length, in number of characters, of the string to be
returned.

The syntax of the substring function looks like this:

substring( expression , start , length )

For example, here is how to specify the second, third, and fourth
characters of the string constant “abcdef”:

select x = substring("abcdef", 2, 3)

x
---------
bcd

(1 row affected)

Table 10-4: String function examples

Statement Result

select right("abcde", 3) cde

select right("abcde", 6) abcde

select right(0x12345000, 3) 0x345000

select right(0x12345000, 6) 0x12345000

select upper("torso") TORSO

select ascii("ABC") 65



Transact-SQL User’s Guide 10-15

Adaptive Server Enterprise Release 11.5.x String Functions Used for Character Strings or Expressions

The following example shows how to extract the lower 4 digits from
a binary field, where each position represents 2 binary digits:

select substring(xactid,5,2) from syslogs

Concatenation

You can concatenate binary or character expressions—combine two
or more character or binary strings, character or binary data, or a
combination of them—with the + string concatenation operator.

When you concatenate character strings, enclose each character
expression in single or double quotes.

The concatenation syntax is:

select ( expression  + expression  [+ expression ]...)

Here is how to combine two character strings:

select ("abc" + "def")

-------
abcdef

(1 row affected)

This query displays California authors’ names under the column
heading Moniker in last name-first name order, with a comma and
space after the last name:

select Moniker = (au_lname + ", " + au_fname)
from authors
where state = "CA"



10-16 Using the Built-In Functions in Queries

String Functions Used for Character Strings or Expressions Adaptive Server Enterprise Release 11.5.x

Moniker
-------------------------------------------------
White, Johnson
Green, Marjorie
Carson, Cheryl
O’Leary, Michael
Straight, Dick
Bennet, Abraham
Dull, Ann
Gringlesby, Burt
Locksley, Chastity
Yokomoto, Akiko
Stringer, Dirk
MacFeather, Stearns
Karsen, Livia
Hunter, Sheryl
McBadden, Heather

(15 rows affected)

To concatenate numeric or datetime datatypes, you must use the
convert function:

select "The due date is " + convert(varchar(30),
    pubdate)
from titles
where title_id = "BU1032"

---------------------------------------
The due date is Jun 12 1986 12:00AM

(1 row affected)

Concatenation and the Empty String

Adaptive Server evaluates the empty string (““ or ‘’) as a single
space. This statement:

select "abc" + "" + "def"

produces:

abc def

Nested String Functions

You can nest the string functions. For example, to display the last
name and the first initial of each author, with a comma after the last
name and a period after the first name, type:



Transact-SQL User’s Guide 10-17

Adaptive Server Enterprise Release 11.5.x Text Functions Used for text and image Data

select (au_lname + "," + " " + substring(au_fname,
1, 1) + ".")
from authors
where city = "Oakland"

--------------------------------------------
Green, M.
Straight, D.
Stringer, D.
MacFeather, S.
Karsen, L.

(5 rows affected)

To display the pub_id and the first 2 characters of each title_id for
books priced more than $20, type:

select substring(pub_id + title_id, 1, 6)
from titles
where price > $20

--------------
1389PC
0877PS
0877TC

(3 rows affected)

Text Functions Used for text and image Data

Text built-in functions are used for operations on text and image data.
Table 10-5 lists text function names, arguments, and results:

Table 10-5: Built-in text functions for text and image data

Function Argument Result

patindex (“%pattern%”, char_expr [using
{bytes | chars | characters} ] )

Returns an integer value representing the starting
position of the first occurrence of pattern in the specified
character expression; returns 0 if pattern is not found. By
default, patindex returns the offset in characters; to return
the offset in bytes for multibyte character strings, specify
using bytes. The % wildcard character must precede and
follow pattern, except when you are searching for first or
last characters. See “Character Strings in Query Results”
on page 2-8 for a description of the wildcard characters
that can be used in pattern.



10-18 Using the Built-In Functions in Queries

Text Functions Used for text and image Data Adaptive Server Enterprise Release 11.5.x

In addition to the functions in Table 10-5, datalength works on text
columns. See “System Functions That Return Database Information”
on page 10-1 for information about datalength.

The set textsize command specifies the limit, in bytes, of the text or
image data to be returned with a select statement. For example, the
following command sets the limit on text or image data returned with
a select statement to 100 bytes:

set textsize 100

The current setting is stored in the @@textsize global variable. The
default setting is controlled by the client program. To reset the
default, issue the following command:

set textsize 0

You can also use the @@textcolid, @@textdbid, @@textobjid, @@textptr,
and @@textsize global variables to manipulate text and image data.

Examples of Using Text Functions

This example uses the textptr function to locate the text column, blurb,
associated with title_id BU7832 in table texttest. The text pointer, a 16-
byte binary string, is put into a local variable, @val, and supplied as a
parameter to the readtext command. readtext returns 5 bytes starting at
the second byte, with an offset of 1.

create table texttest
(title_id varchar(6),
blurb text null,
pub_id char(4))

insert texttest values ("BU7832", "Straight Talk
    About Computers is an annotated analysis of
    what computers can do for you: a no-hype guide
    for the critical user.", "1389")

textptr (text_columname) Returns the text pointer value, a 16-byte binary value.
The text pointer is checked to ensure that it points to the
first text page.

textvalid (“table_name..col_name”,
textpointer)

Checks that a given text pointer is valid. Note that the
identifier for a text or image column must include the
table name. Returns 1 if the pointer is valid, 0 if the
pointer is invalid.

Table 10-5: Built-in text functions for text and image data (continued)

Function Argument Result



Transact-SQL User’s Guide 10-19

Adaptive Server Enterprise Release 11.5.x Aggregate Functions

declare @val varbinary(16)
select @val = textptr(blurb) from texttest
where title_id = "BU7832"
readtext texttest.blurb @val 1 5

The textptr function returns a 16-byte binary string. It is a good idea to
put this string into a local variable, as in the preceding example, and
use it by reference.

An alternative to using the textptr function in the preceding declare
example is the @@textptr global variable:

readtext texttest.blurb @@textptr 1 5

The value of @@textptr is set from the last insert or update to any text or
image field by the current Adaptive Server process. Inserts and
updates by other processes do not affect the current process.

Explicit conversion using the convert function is supported from text
to char, nchar, varchar or nvarchar, and from image to varbinary or
binary, but the text or image data is truncated to 255 bytes. Conversion
of text or image to datatypes other than these is not supported,
implicitly or explicitly.

Aggregate Functions

The aggregate functions generate summary values that appear as
new columns in the query results. Table 10-6 lists the aggregate
functions, their arguments, and the results they return.

Table 10-6:  Aggregate functions

Function Argument Result

avg (all | distinct) expression Returns the numeric average
of all (distinct) values

count (all | distinct) expression Returns the number of
(distinct) non-null values or
the number of rows

max (expression) Returns the highest value in
an expression

min (expression) Returns the lowest value in a
column

sum (all | distinct) expression Returns the total of the values



10-20 Using the Built-In Functions in Queries

Mathematical Functions Adaptive Server Enterprise Release 11.5.x

Examples are as follows:

select avg(advance), sum(total_sales)
from titles
where type = "business"

------------------------ -----------
                 6281.25      30,788

(1 row affected)

select count(distinct city) from authors

-----------
         16

(1 row affected)

select discount from salesdetail
compute max(discount)

discount
--------------------
           40.000000
           ...
           46.700000

Compute Result:
--------------------
           62.200000

(117 rows affect)

select min(au_lname) from authors

---------------------
Bennet

(1 row affected)

Mathematical Functions

Mathematical built-in functions return values commonly needed for
operations on mathematical data.

The mathematical functions take the general form:

function_name ( arguments )



Transact-SQL User’s Guide 10-21

Adaptive Server Enterprise Release 11.5.x Mathematical Functions

The chart below lists the types of arguments that are used in the
built-in mathematical functions:

Each function also accepts arguments that can be implicitly
converted to the specified type. For example, functions that accept
approximate numeric types also accept integer types. Adaptive
Server converts the argument to the desired type.

If a function takes more than one expression of the same type, the
expressions are numbered (for example, approx_numeric1,
approx_numeric2).

Table 10-8 lists the mathematical functions, their arguments, and the
results they return:

Table 10-7: Arguments used in mathematical functions

Argument Type Can Be Replaced By

approx_numeric Any approximate numeric (float, real, or double precision)
column name, variable, constant expression, or a
combination of these.

integer Any integer (tinyint, smallint or int) column name,
variable, constant expression, or a combination of these.

numeric Any exact numeric (numeric, dec, decimal, tinyint, smallint,
or int), approximate numeric (float, real, or double precision),
or money column, variable, constant expression, or a
combination of these.

power Any exact numeric, approximate numeric, or money
column, variable, or constant expression, or a combination
of these.

Table 10-8: Mathematical functions

Function Argument Result

abs (numeric) Returns the absolute value of a given
expression. Results are of the same type, and
have the same precision and scale, as the
numeric expression.

acos (approx_numeric) Returns the angle (in radians) whose cosine
is the specified value.

asin (approx_numeric) Returns the angle (in radians) whose sine is
the specified value.

atan (approx_numeric) Returns the angle (in radians) whose tangent
is the specified value.



10-22 Using the Built-In Functions in Queries

Mathematical Functions Adaptive Server Enterprise Release 11.5.x

atn2 (approx_numeric1,
approx_numeric2)

Returns the angle (in radians) whose tangent
is (approx_numeric1/approx_numeric2).

ceiling (numeric) Returns the smallest integer greater than or
equal to the specified value. Results are of
the same type as the numeric expression. For
numeric and decimal expressions, the results
have a precision equal to that of the
expression and a scale of 0.

cos (approx_numeric) Returns the trigonometric cosine of the
specified angle (in radians).

cot (approx_numeric) Returns the trigonometric cotangent of the
specified angle (in radians).

degrees (numeric) Converts radians to degrees. Results are of
the same type as the numeric expression. For
numeric and decimal expressions, the results
have an internal precision of 77 and a scale
equal to that of the expression. When money
datatype is used, internal conversion to float
may cause loss of precision.

exp (approx_numeric) Returns the exponential value of the
specified value.

floor (numeric) Returns the largest integer that is less than or
equal to the specified value. Results are of
the same type as the numeric expression. For
expressions of type numeric or decimal, the
results have a precision equal to that of the
expression and a scale of 0.

log (approx_numeric) Returns the natural logarithm of the
specified value.

log10 (approx_numeric) Returns the base 10 logarithm of the
specified value.

pi () Returns the constant value of
3.1415926535897931.

power (numeric, power) Returns the value of numeric to the power of
power. Results are of the same type as
numeric. For expressions of type numeric or
decimal, the results have a precision of 77 and
a scale equal to that of the expression.

Table 10-8: Mathematical functions (continued)

Function Argument Result



Transact-SQL User’s Guide 10-23

Adaptive Server Enterprise Release 11.5.x Mathematical Functions

Examples of Using Mathematical Functions

The mathematical built-in functions operate on numeric data.
Certain functions require integer data and others approximate
numeric data. A number of functions operate on exact numeric,
approximate numeric, money, and float types. The precision of built-
in operations on float type data is 6 decimal places by default.

Error traps are provided to handle domain or range errors of the
mathematical functions. Users can set the arithabort and arithignore
options to determine how domain errors are handled. For more

radians (numeric_expr) Converts degrees to radians. Results are of
the same type as numeric. For expressions of
type numeric or decimal, the results have an
internal precision of 77 and a scale equal to
that of the numeric expression. When the
money datatype is used, internal conversion
to float may cause loss of precision.

rand ([integer]) Returns a random float value between 0 and
1, using the optional integer as a seed value.

round (numeric, integer) Rounds the numeric so that it has integer
significant digits. A positive integer
determines the number of significant digits
to the right of the decimal point; a negative
integer, the number of significant digits to the
left of the decimal point. Results are of the
same type as the numeric expression and, for
numeric and decimal expressions, have an
internal precision equal to the precision of
the first argument plus 1 and a scale equal to
that of the numeric expression.

sign (numeric) Returns the sign of numeric: positive (+1),
zero (0), or negative (-1). Results are of the
same type, and have the same precision and
scale, as the numeric expression.

sin (approx_numeric) Returns the trigonometric sine of the
specified angle (measured in radians).

sqrt (approx_numeric) Returns the square root of the specified
value. Value must be positive or 0.

tan (approx_numeric) Returns the trigonometric tangent of the
specified angle (measured in radians).

Table 10-8: Mathematical functions (continued)

Function Argument Result



10-24 Using the Built-In Functions in Queries

Date Functions Adaptive Server Enterprise Release 11.5.x

information about these options, see the section “Conversion Errors”
on page 10-37.

Some simple examples of mathematical functions follow:

The round(numeric, integer) function always returns a value. If integer is
negative and exceeds the number of significant digits in numeric,
Adaptive Server rounds only the most significant digit. For example:

select round(55.55, -3)

returns a value of 100.00. (The number of zeros to the right of the
decimal point is equal to the scale of the first argument’s precision
plus 1.)

Date Functions

The date built-in functions display information about dates and
times. They manipulate datetime and smalldatetime values,
performing arithmetic operations on them.

Adaptive Server stores values with the datetime datatype internally
as two 4-byte integers. The first 4 bytes store the number of days
before or after the base date, January 1, 1900. The base date is the
system’s reference date. datetime values earlier than January 1, 1753
are not permitted. The other 4 bytes of the internal datetime
representation store the time of day to an accuracy of 1/300 second.

Table 10-9: Examples of mathematical functions

Statement Result

select floor(123)
select floor(123.45)
select floor(1.2345E2)
select floor(-123.45)
select floor(-1.2345E2)
select floor($123.45)

123
123.000000
123.000000
-124.000000
-124.000000
123.00

select ceiling(123.45)
select ceiling(-123.45)
select ceiling(1.2345E2)
select ceiling(-1.2345E2)
select ceiling($123.45)

124.000000
-123.000000
124.000000
-123.000000
124.00

select round(123.4545, 2)
select round(123.45, -2)
select round(1.2345E2, 2)
select round(1.2345E2, -2)

123.4500
100.00
123.450000
100.000000



Transact-SQL User’s Guide 10-25

Adaptive Server Enterprise Release 11.5.x Date Functions

The smalldatetime datatype stores dates and times of day with less
precision than datetime. smalldatetime values are stored as two 2-byte
integers. The first 2 bytes store the number of days after January 1,
1900. The other 2 bytes store the number of minutes since midnight.
Dates range from January 1, 1900 to June 6, 2079, with accuracy to the
minute.

The default display format for dates looks like this:

Apr 15 1997 10:23PM

See “Using the General Purpose Conversion Function: convert” on
page 10-32 for information on changing the display format for
datetime or smalldatetime. When you enter datetime or smalldatetime
values, enclose them in single or double quotes. Adaptive Server
may round or truncate millisecond values.

Adaptive Server recognizes a wide variety of datetime data entry
formats. For more information about datetime and smalldatetime
values, see Chapter 7, “Creating Databases and Tables,” and Chapter
8, “Adding, Changing, and Deleting Data.”

The following table lists the date functions and the results they
produce:

The datename, datepart, datediff, and dateadd functions take as arguments
a date part—the year, month, hour, and so on. Table 10-11 lists each
date part, its abbreviation (if there is one), and the possible integer

Table 10-10: Date functions

Function Argument Result

getdate () Current system date and time.

datename (datepart, date) Part of a datetime or smalldatetime
value as an ASCII string.

datepart (datepart, date) Part of a datetime or smalldatetime
value (for example, the month) as an
integer.

datediff (datepart, date, date) The amount of time between the
second and first of two dates,
converted to the specified date part
(for example, months, days, hours).

dateadd (datepart, number,
date)

A date produced by adding date parts
to another date.



10-26 Using the Built-In Functions in Queries

Date Functions Adaptive Server Enterprise Release 11.5.x

values for that date part. The datename function produces ASCII
values where appropriate, such as for the day of the week.

For example:

select datename (mm, "1997/06/16")

-----------
June

(1 row affected)

select datediff (yy, "1984", "1997")

-----------
        13

(1 row affected)

select dateadd (dd, 16, "1997/06/16")
------------------------------
           Jul  2 1997 12:00AM

(1 row affected)

Note that the values of the weekday date part are affected by the
language setting.

The datepart function accepts the following date parts for the week
number:

Table 10-11: Date parts

Date Part Abbreviation Values

year yy 1753–9999

quarter qq 1–4

month mm 1–12

week wk 1–54

day dd 1–31

dayofyear dy 1–366

weekday dw 1– 7 (Sunday–Saturday)

hour hh 0–23

minute mi 0–59

second ss 0–59

millisecond ms 0–999



Transact-SQL User’s Guide 10-27

Adaptive Server Enterprise Release 11.5.x Date Functions

• calweekofyear returns the week number

• calyearofweek returns the year number for the week

• caldayofweek returns the day number within the week

Some examples of the week number date parts:

select datepart(cwk,"1997/01/31")

-----------
          5

(1 row affected)

select datepart(cyr,"1997/01/15")

-----------
       1997

(1 row affected)

select datepart(cdw,"1997/01/24")

-----------
          5

(1 row affected)

Table 10-12 lists the week number date parts, their abbreviations and
values .

Get Current Date: getdate

The getdate function produces the current date and time in Adaptive
Server internal format for datetime values. getdate takes the NULL
argument, ().

To find the current system date and time, type:

select getdate()

Table 10-12: Week number date parts

Date Part Abbreviation Values

calweekofyear cwk 1–52

calyearofweek cyr 1753–9999

caldayofweek cdw 1–7 (1 is Monday in us_english)



10-28 Using the Built-In Functions in Queries

Date Functions Adaptive Server Enterprise Release 11.5.x

--------------------------
Aug 19 1997 12:45PM

(1 row affected)

You might use getdate in designing a report so that the current date
and time are printed every time the report is produced. getdate is also
useful for functions such as logging the time a transaction occurred
on an account.

To display the date using milliseconds, use the convert function, for
example:

select convert(char(26), getdate(), 109)

--------------------------
Aug 19 1997 12:45:59:650PM

(1 row affected)

See “Changing the Display Format for Dates” on page 10-40 for more
information.

Find Date Parts As Numbers or Names

The datepart and datename functions produce the specified part of a
datetime or smalldatetime value—the year, quarter, day, hour, and so
on—as either an integer or an ASCII string. Since smalldatetime is
accurate only to the minute, when a smalldatetime value is used with
either of these functions, seconds and milliseconds are always 0.

The following examples assume an April 12 date:

select datepart(month, getdate())

--------------
8

(1 row affected)

select datename(month, getdate())

-------------
August

(1 row affected)



Transact-SQL User’s Guide 10-29

Adaptive Server Enterprise Release 11.5.x Date Functions

Calculate Intervals or Increment Dates

The datediff function calculates the amount of time in date parts
between the first and second of the two dates you specify—in other
words, it finds the interval between the two dates. The result is a
signed integer value equal to date2 - date1 in date parts.

This query uses the date November 30, 1990 and finds the number of
days that elapsed between pubdate and that date:

select pubdate, newdate = datediff(day, pubdate,
    "Nov 30 1990")
from titles

For the rows in the titles table having a pubdate of October 21, 1990,
the result produced by the previous query is 40, the number of days
between October 21 and November 30. To calculate an interval in
months, the query is:

select pubdate, interval = datediff(month, pubdate,
    "Nov 30 1990")
from titles

This query produces a value of 1 for the rows with a pubdate in
October 1990 and a value of 5 for the rows with a pubdate in June
1990. When the first date in the datediff function is later than the
second date, the resulting value is negative. Since two of the rows in
titles have values for pubdate that are assigned using the getdate
function as a default, these values are set to the date that your pubs
database was created and return negative values (-65) in the two
preceding queries.

If one or both of the date arguments is a smalldatetime value, they are
converted to datetime values internally for the calculation. Seconds
and milliseconds in smalldatetime values are automatically set to 0 for
the purpose of calculating the difference.

Add Date Interval: dateadd

The dateadd function adds an interval (specified as a integer) to a date
you specify. For example, if the publication dates of all the books in
the titles table slipped three days, you could get the new publication
dates with this statement:

select dateadd(day, 3, pubdate)
from titles



10-30 Using the Built-In Functions in Queries

Datatype Conversion Functions Adaptive Server Enterprise Release 11.5.x

-------------------
Jun 15 1986 12:00AM
Jun 12 1988 12:00AM
Jul  3 1985 12:00AM
Jun 25 1987 12:00AM
Jun 12 1989 12:00AM
Jun 21 1985 12:00AM
Jul  6 1997  1:43PM
Jul  3 1986 12:00AM
Jun 15 1987 12:00AM
Jul  6 1997  1:43PM
Oct 24 1990 12:00AM
Jun 18 1989 12:00AM
Oct  8 1990 12:00AM
Jun 15 1988 12:00AM
Jun 15 1988 12:00AM
Oct 24 1990 12:00AM
Jun 15 1985 12:00AM
Jun 15 1987 12:00AM

(18 rows affected)

If the date argument is given as a smalldatetime, the result is also a
smalldatetime. You can use dateadd to add seconds or milliseconds to a
smalldatetime, but it is meaningful only if the result date returned by
dateadd changes by at least one minute.

Datatype Conversion Functions

Datatype conversions change an expression from one datatype to
another and reformat date and time information. Adaptive Server
provides three datatype conversion functions, convert, inttohex, and
hextoint.

Adaptive Server performs certain datatype conversions
automatically. These are called implicit conversions. For example, if
you compare a char expression and a datetime expression, or a smallint
expression and an int expression, or char expressions of different
lengths, Adaptive Server automatically converts one datatype to
another.

You must request other datatype conversions explicitly, using one of
the built-in datatype conversion functions. For example, before
concatenating numeric expressions, you must convert them to
character expressions.



Transact-SQL User’s Guide 10-31

Adaptive Server Enterprise Release 11.5.x Datatype Conversion Functions

Adaptive Server does not allow you to convert certain datatypes to
certain other datatypes, either implicitly or explicitly. For example,
you cannot convert smallint data to datetime or datetime data to
smallint. Unsupported conversions result in error messages.

Supported Conversions

Figure 10-1 summarizes the datatype conversions supported by
Adaptive Server:

• Conversions marked “I” are handled implicitly. They do not
require a datatype conversion function, although you can use the
convert function on them without error.

• Conversions marked “E” must be done explicitly, with the
appropriate datatype conversion function.

• Conversions marked “IE” are handled implicitly when there is no
loss of precision or scale and the arithabort numeric_truncation option
is on, but require an explicit conversion otherwise.

• Conversions marked “U” are unsupported. If you attempt such a
conversion, Adaptive Server generates an error message.

• Conversions of a type to itself are marked “-”. In general,
Adaptive Server does not prohibit you from explicitly converting
a type to itself, but such conversions are meaningless.



10-32 Using the Built-In Functions in Queries

Datatype Conversion Functions Adaptive Server Enterprise Release 11.5.x

Figure 10-1: Implicit, explicit, and unsupported datatype conversions

Using the General Purpose Conversion Function: convert

The general conversion function, convert, converts between a variety
of datatypes and specifies a new display format for date and time
information. Its syntax is:

convert( datatype, expression  [, style ])

bi
na

ry

va
rb

in
ar

y

tin
yi

nt

sm
al

lin
t

in
t

de
ci

m
al

nu
m

er
ic

re
al

flo
at

ch
ar

, n
ch

ar

nv
ar

ch
ar

sm
al

lm
on

ey

m
on

ey

bi
t

sm
al

ld
at

et
im

e

da
te

tim
e

te
xt

im
ag

e

From: To:

va
rc

ha
r,

binary - I I I I I I I I I I I I I I I U E

varbinary I - I I I I I I I I I I I I I I U E

tinyint I I - I I I I I I E E I I I U U U U

smallint I I I - I I I I I E E I I I U U U U

int I I I I - I I I I E E I I I U U U U

decimal I I I I I IE IE I I E E I I I U U U U

numeric I I I I I IE IE I I E E I I I U U U U

real I I I I I I I - I E E I I I U U U U

float I I I I I I I I - E E I I I U U U U

char, nchar E E E E E E E E E I I E E E I I E E

varchar,
nvarchar

E E E E E E E E E I I E E E I I E E

smallmoney I I I I I I I I I I I - I I U U U U

money I I I I I I I I I I I I - I U U U U

bit I I I I I I I I I I I I I - U U U U

smalldatetime I I U U U U U U U E E U U U - I U U

datetime I I U U U U U U U E E U U U I - U U

text U U U U U U U U U E E U U U U U U U

image E E U U U U U U U U U U U U U U U U



Transact-SQL User’s Guide 10-33

Adaptive Server Enterprise Release 11.5.x Datatype Conversion Functions

Here is an example that uses convert in the select list:

select title, convert(char(5), total_sales)
from titles
where type = "trad_cook"

title
------------------------------------     -----
Onions, Leeks, and Garlic: Cooking
    Secrets of the Mediterranean  375
Fifty Years in Buckingham Palace
    Kitchens   15096
Sushi, Anyone?   4095

(3 rows affected)

In the following example, the total_sales column, an int column, is
converted to a char(5) column so that it can be used with the like
keyword:

select title, total_sales
from titles
where convert(char(5), total_sales) like "15%"
    and type = "trad_cook"

title
---------------------------------        -----
Fifty Years in Buckingham Palace
    Kitchens     15096

(1 row affected)

Certain datatypes expect either a length or a precision and scale. If
you do not specify a length, Adaptive Server uses the default length
of 30 for character and binary data. If you do not specify a precision
or scale, Adaptive Server uses the defaults of 18 and 0, respectively.

Conversion Rules

The following sections describe the rules Adaptive Server observes
when converting different types of information:

Converting Character Data to a Noncharacter Type

Character data can be converted to a noncharacter type—such as a
money, date and time, exact numeric, or approximate numeric
type—if it consists entirely of characters that are valid for the new
type. Leading blanks are ignored. However, if a char expression that



10-34 Using the Built-In Functions in Queries

Datatype Conversion Functions Adaptive Server Enterprise Release 11.5.x

consists of a blank or blanks is converted to a datetime expression,
Adaptive Server converts the blanks into the Sybase default datetime
value of “Jan 1, 1900”.

Adaptive Server generates syntax errors if the data includes
unacceptable characters. The following types of characters cause
syntax errors:

• Commas or decimal points in integer data

• Commas in monetary data

• Letters in exact or approximate numeric data or bit-stream data

• Misspelled month names in date and time data

Converting from One Character Type to Another

When you convert from a multibyte character set to a single-byte
character set, characters with no single-byte equivalent are
converted to blanks.

text columns can be explicitly converted to char, nchar, varchar, or
nvarchar. You are limited to the maximum length of the character
datatypes, 255 bytes. If you do not specify the length, the converted
value has a default length of 30 bytes.

Converting Numbers to a Character Type

You can convert exact and approximate numeric data to a character
type. If the new type is too short to accommodate the entire string, an
insufficient space error is generated. For example, the following
conversion tries to store a 5-character string in a 1-character type:

select convert(char(1), 12.34)

It fails because the char datatype is limited to 1 character, and the
numeric 12.34 requires 5 characters for the conversion to be
successful.

Rounding During Conversion to or from Money Types

The money and smallmoney types store 4 digits to the right of the
decimal point, but round up to the nearest hundredth (.01) for
display purposes. When data is converted to a money type, it is
rounded up to 4 decimal places.

Data converted from a money type follows the same rounding
behavior if possible. If the new type is an exact numeric with less



Transact-SQL User’s Guide 10-35

Adaptive Server Enterprise Release 11.5.x Datatype Conversion Functions

than 3 decimal places, the data is rounded to the scale of the new
type. For example, when $4.50 is converted to an integer, it yields 5:

select convert(int, $4.50)

-----------
          5

(1 row affected)

Adaptive Server assumes that data converted to money or smallmoney
is in full currency units, such as dollars, rather than in fractional
units, such as cents. For example, the integer value of 5 would be
converted to the money equivalent of 5 dollars, not 5 cents, in
us_english.

Converting Date and Time Information

Data that is recognizable as a date can be converted to datetime or
smalldatetime. Incorrect month names lead to syntax errors. Dates
that fall outside the acceptable range for the datatype lead to
arithmetic overflow errors.

When datetime values are converted to smalldatetime, they are
rounded up to the nearest minute.

Converting Between Numeric Types

Data can be converted from one numeric type to another. If the new
type is an exact numeric whose precision or scale is not sufficient to
hold the data, errors can occur. Use the arithabort and arithignore options
to determine how these errors are handled.

➤ Note
The arithabort and arithignore options were redefined in SQL Server release

10.0. If you use these options in your applications, examine them to make

sure they are still functioning correctly.

Converting Binary-Like Data

Adaptive Server binary and varbinary data is platform-specific; the
type of hardware you are using determines how the data is stored
and interpreted. Some platforms consider the first byte after the “0x”



10-36 Using the Built-In Functions in Queries

Datatype Conversion Functions Adaptive Server Enterprise Release 11.5.x

prefix to be the most significant; others consider the first byte to be
the least significant.

The convert function treats Sybase binary data as a string of
characters, rather than as numeric information. convert takes no
account of byte order significance when converting a binary
expression to an integer or an integer expression to a binary value.
Because of this, conversion results can vary from one platform to
another.

Before converting a binary string to an integer, convert strips it of its
“0x” prefix. If the string consists of an odd number of digits,
Adaptive Server inserts a leading zero. If the data is too long for the
integer type, convert truncates it. If the data is too short, convert adds
leading zeros to make it even, and then pads it with zeros on the
right.

Suppose you want to convert the string 0x00000100 to an integer. On
some platforms, this string represents the number 1; on others, the
number 256. Depending on which platform executes the function,
convert returns either 1 or 256.

Converting Hexadecimal Data

For conversion results that are reliable across platforms, use the
hextoint and inttohex functions.

hextoint accepts literals or variables consisting of digits and the
uppercase and lowercase letters A–F, with or without a “0x” prefix.
The following are all valid uses of hextoint:

hextoint("0x00000100FFFFF")
hextoint("0x00000100")
hextoint("100")

hextoint strips it of the “0x” prefix. If the data exceeds 8 digits, hextoint
truncates it. If the data is less than 8 digits, hextoint right-justifies and
pads it with zeros. Then hextoint returns the platform-independent
integer equivalent. The above expressions all return the same value,
256, regardless of the platform that executes the hextoint function.

The inttohex function accepts integer data and returns an 8-character
hexadecimal string without a “0x” prefix. inttohex always returns the
same results, regardless of which platform you are using.



Transact-SQL User’s Guide 10-37

Adaptive Server Enterprise Release 11.5.x Datatype Conversion Functions

Converting image Data to binary or varbinary

Use the convert function to convert an image column to binary or
varbinary. You are limited to the maximum length of the binary
datatypes, 255 bytes. If you do not specify the length, the converted
value has a default length of 30 characters.

Converting Between Binary and Numeric or Decimal Types

In binary and varbinary data strings, the first two digits after “0x”
represent the binary type: “00” represents a positive number and “01”
represents a negative number. When you convert a binary or
varbinary type to numeric or decimal, be sure to specify the “00” or
“01” values after the “0x” digit; otherwise, the conversion will fail.

For example, here is how to convert the following binary data to
numeric:

select convert(numeric
(38, 18),0x000000000000000006b14bd1e6eea0000000000000000000000000000000)

----------------------
123.456000000000000000

This example converts the same numeric data back to binary:

select convert(binary,convert(numeric(38, 18), 123.456))

--------------------------------------------------------------
0x000000000000000006b14bd1e6eea0000000000000000000000000000000

Conversion Errors

The following sections describe the types of errors that can occur
during datatype conversions.

Arithmetic Overflow and Divide-by-Zero Errors

Divide-by-zero errors occur when Adaptive Server tries to divide a
numeric value by zero. Arithmetic overflow errors occur when the
new type has too few decimal places to accommodate the results.
This happens during:

• Explicit or implicit conversions to exact types with a lower
precision or scale

• Explicit or implicit conversions of data that falls outside the
acceptable range for a money or datetime type



10-38 Using the Built-In Functions in Queries

Datatype Conversion Functions Adaptive Server Enterprise Release 11.5.x

• Conversions of strings longer than 4 bytes using hextoint

Both arithmetic overflow and divide-by-zero errors are considered
serious, whether they occur during implicit or explicit conversions.
Use the arithabort arith_overflow option to determine how Adaptive
Server handles these errors. The default setting, arithabort arith_overflow
on, rolls back the entire transaction in which the error occurs. If you
set arithabort arith_overflow off, Adaptive Server aborts the statement that
causes the error but continues to process other statements in the
transaction or batch.You can use the @@error global variable to check
statement results.

Use the arithignore arith_overflow option to determine whether Adaptive
Server displays a message after these errors. The default setting, off,
displays a warning message when a divide-by-zero error or a loss of
precision occurs. Setting arithignore arith_overflow on suppresses
warning messages after these errors. The optional arith_overflow
keyword can be omitted without any effect.

Scale Errors

When an explicit conversion results in a loss of scale, the results are
truncated without warning. For example, when you explicitly
convert a float, numeric, or decimal type to an integer, Adaptive Server
assumes you really want the result to be an integer and truncates all
numbers to the right of the decimal point.

During implicit conversions to numeric or decimal types, loss of scale
generates a scale error. Use the arithabort numeric_truncation option to
determine how serious such an error is considered. The default
setting, arithabort numeric_truncation on, aborts the statement that causes
the error but continues to process other statements in the transaction
or batch. If you set arithabort numeric_truncation off, Adaptive Server
truncates the query results and continues processing.

Domain Errors

The convert function generates a domain error when the function’s
argument falls outside the range over which the function is defined.
This should happen very rarely.

Conversions Between Binary and Integer Types

The binary and varbinary types store hexadecimal-like data consisting
of a “0x” prefix followed by a string of digits and letters. These
strings are interpreted differently by different platforms. For



Transact-SQL User’s Guide 10-39

Adaptive Server Enterprise Release 11.5.x Datatype Conversion Functions

example, the string 0x0000100 represents 65,536 on machines that
consider byte 0 most significant and 256 on machines that consider
byte 0 least significant.

The convert Function and Implicit Conversions

Binary types can be converted to integer types either explicitly, with
the convert function, or implicitly. The data is stripped of its “0x”
prefix and then zero-padded if it is too short for the new type or
truncated if it is too long.

Both convert and the implicit datatype conversions evaluate binary
data differently on different platforms. Therefore, the results may
vary from one platform to another. Use the hextoint function for
platform-independent conversion of hexadecimal strings to integers
and the inttohex function for platform-independent conversion of
integers to hexadecimal values.

The hextoint Function

Use the hextoint function for platform-independent conversions of
hexadecimal data to integers. hextoint accepts a valid hexadecimal
string, with or without a “0x” prefix, enclosed in quotes, or the name
of a character-type column or variable.

hextoint returns the integer equivalent of the hexadecimal string. The
function always returns the same integer equivalent for a given
hexadecimal string, regardless of the platform on which it is
executed.

The inttohex Function

Use the inttohex function for platform-independent conversions of
integers to hexadecimal strings. inttohex accepts any expression that
evaluates to an integer. It always returns the same hexadecimal
equivalent for a given expression, regardless of the platform on
which it is executed.

Converting image Columns to Binary Types

You can use the convert function to convert an image column to binary
or varbinary. You are limited to the maximum length of the binary
datatypes, 255 bytes. If you do not specify the length, the converted
value has a default length of 30 characters.



10-40 Using the Built-In Functions in Queries

Datatype Conversion Functions Adaptive Server Enterprise Release 11.5.x

Converting Other Types to bit Types

Exact and approximate numeric types can be converted to the bit
type implicitly. Character types require an explicit convert function.

The expression being converted must consist only of digits, a
decimal point, a currency symbol, and a plus or minus sign. The
presence of other characters generates syntax errors.

The bit equivalent of 0 is 0. The bit equivalent of any other number
is 1.

Changing the Display Format for Dates

The style parameter of convert provides a variety of date display
formats for converting datetime or smalldatetime data to char or
varchar. The number argument you supply as the style parameter
determines how the data is displayed. The year can be displayed in
either 2 digits or 4 digits. Add 100 to a style value to get a 4-digit year,
including the century (yyyy).

Following is a table of the possible values for style and the variety of
date formats you can use. When you use style with smalldatetime, the
styles that include seconds or milliseconds will show zeros in those
positions.

Table 10-13: Converting date formats with the style parameter

Without Century (yy) With Century
(yyyy) Standard Output

- 0 or 100 Default mon dd yyyy hh:mm AM (or PM)

1  101 USA mm/dd/yy

2  2 SQL standard yy.mm.dd

 3 103 English/French dd/mm/yy

 4 104 German dd.mm.yy

 5 105 dd-mm-yy

 6 106 dd mon yy

 7 107 mon dd, yy

 8  108 hh:mm:ss

 - 9 or 109 Default +
milliseconds

mon dd yyyy hh:mm:sss AM (or PM)

10 110 USA mm-dd-yy



Transact-SQL User’s Guide 10-41

Adaptive Server Enterprise Release 11.5.x Security Functions

The default values, style 0 or 100, and 9 or 109, always return the
century (yyyy).

Following is an example of the use of convert’s style parameter:

select convert(char(12), getdate(), 3)

This converts the current date to style 3, dd/mm/yy.

Security Functions

The security functions return information about security services
and user-defined roles. Table 10-14 lists the name of each security
function, the argument it takes, and the result it returns.

11 111 Japan yy/mm/dd

12 112 ISO yymmdd

Table 10-14: Security functions

Function Argument Result

is_sec_service_on (security_service_nm) Determines whether a particular security
service is enabled. Returns 1 if the service is
enabled. Otherwise, returns 0.

mut_excl_roles ("role_1", "role_2"[,
"membership" |"activation"])

Returns information about the level of
mutual exclusivity between two roles.

proc_role ("role_name") Returns 0 if the invoking user does not
possess or has not activated the specified
role; 1 if the invoking user has activated the
specified role; and 2 if the user possesses the
specified role directly or indirectly, but has
not activated the role.

role_contain (["role1", "role2"]) Returns 1 if the first role specified is
contained by the second.

role_id ("role_name") Returns the role id of the specified role name.

role_name (role_id) Returns the role name of the specified role id.

Table 10-13: Converting date formats with the style parameter (continued)

Without Century (yy) With Century
(yyyy) Standard Output



10-42 Using the Built-In Functions in Queries

Security Functions Adaptive Server Enterprise Release 11.5.x

For more information about security features and user-defined roles,
see the Security Administration Guide and the Security Features User’s
Guide.

show_role ( ) Returns the login’s current active roles, if any
(sa_role, sso_role, oper_role, replication_role, or
role_name). If the login has no roles, returns
NULL.

show_sec_services ( ) Returns a list of the available security
services that are enabled for the current
session

Table 10-14: Security functions (continued)

Function Argument Result



Transact-SQL User’s Guide 11-1

11 Creating Indexes on Tables 11.

An index provides quick access to data in a table, based on the values
in specified columns. A table can have more than one index. Indexes
are transparent to users accessing data from that table; Adaptive
Server automatically decides when to use the indexes created for
tables.

This chapter discusses:

• How Indexes Work   11-1

• Creating Indexes   11-4

• Using Clustered or Nonclustered Indexes   11-8

• Specifying Index Options   11-11

• Dropping Indexes   11-13

• Determining What Indexes Exist on a Table   11-14

• Updating Statistics About Indexes   11-15

For information on how you can design indexes to improve
performance, see Chapter 4, “How Indexes Work,” and Chapter 7,
“Indexing for Performance,” in the Performance and Tuning Guide.

How Indexes Work

Indexes help Adaptive Server locate data. They speed up data
retrieval by pointing to the location of a table column’s data on disk.
For example, suppose you need to run frequent queries using the
identification numbers of stores in the stores table. To prevent
Adaptive Server from having to search through each row in the
table—which can be time-consuming if the stores table contains
millions of rows—you could create the following index, entitled
stor_id_ind:

create index stor_id_ind
on stores (stor_id)

The stor_id_ind index goes into effect automatically the next time you
query the stor_id column in stores. In other words, indexes are
transparent to users. SQL includes no syntax for referring to an index
in a query. You can only create or drop indexes from a table;
Adaptive Server decides whether to use the indexes for each query
submitted for that table. As the data in a table changes over time,



11-2 Creating Indexes on Tables

How Indexes Work Adaptive Server Enterprise Release 11.5.x

Adaptive Server may change the table’s indexes to reflect those
changes. Again, these changes are transparent to users; Adaptive
Server handles this task on its own.

Adaptive Server supports the following types of indexes:

• Composite indexes – These indexes involve more than one
column. Use this type of index when two or more columns are
best searched as a unit because of their logical relationship.

• Unique indexes – These indexes do not permit any two rows in
the specified columns to have the same value. Adaptive Server
checks for duplicate values when the index is created (if data
already exists) and each time data is added.

• Clustered or nonclustered indexes – Clustered indexes force
Adaptive Server to continually sort and re-sort the rows of a table
so that their physical order is always the same as their logical (or
indexed) order. You can have only one clustered index per table.
Nonclustered indexes do not require the physical order of rows to
be the same as their indexed order. Each nonclustered index can
provide access to the data in a different sort order.

These types of indexes are described in more detail later in this
chapter.

Comparing the Two Ways to Create Indexes

You can create indexes on tables either by using the create index
statement (described in this chapter) or by using the unique or primary
key integrity constraints of the create table command. However, these
integrity constraints are limited in the following ways:

• You cannot create nonunique indexes.

• You cannot use the options provided by the create index command
to tailor how indexes work.

• You can only drop these indexes as a constraint using the alter table
statement.

If your application requires these features, you should create your
indexes using create index. Otherwise, the unique or primary key integrity
constraints offer a simpler way to define an index for a table. For
information about the unique and primary key constraints, see Chapter 7,
“Creating Databases and Tables.”



Transact-SQL User’s Guide 11-3

Adaptive Server Enterprise Release 11.5.x How Indexes Work

Guidelines for Using Indexes

Indexes speed the retrieval of data. Putting an index on a column
often makes the difference between a quick response to a query and
a long wait.

So why not index every column? The most significant reason is that
building an index takes time and storage space. For example,
nonclustered indexes are automatically re-created when a clustered
index is rebuilt.

Another reason is that inserting, deleting, or updating data in
indexed columns takes longer than in unindexed columns. However,
this cost is usually outweighed by the extent to which indexes
improve retrieval performance.

When to Index

Use the following general guidelines:

• If you plan to do manual insertions into the IDENTITY column,
create a unique index to ensure that the inserts do not assign a
value that has already been used.

• A column that is often accessed in sorted order, that is, specified
in the order by clause, probably should be indexed so that
Adaptive Server can take advantage of the indexed order.

• Columns that are regularly used in joins should always be
indexed, since the system can perform the join faster if the
columns are in sorted order.

• The column that stores the primary key of the table often has a
clustered index, especially if it is frequently joined to columns in
other tables. (Remember, there can be only one clustered index
per table.)

• A column that is often searched for ranges of values might be a
good choice for a clustered index. Once the row with the first
value in the range is found, rows with subsequent values are
guaranteed to be physically adjacent. A clustered index does not
offer as much of an advantage for searches on single values.



11-4 Creating Indexes on Tables

Creating Indexes Adaptive Server Enterprise Release 11.5.x

When Not to Index

In some cases, indexes are not useful:

• Columns that are seldom or never referenced in queries do not
benefit from indexes, since the system seldom has to search for
rows on the basis of values in these columns.

• Columns that can have only two or three values, for example,
“male” and “female” or “yes” and “no”, get no real advantage
from indexes.

If the system does have to search an unindexed column, it does so by
looking at the rows one by one. The length of time it takes to perform
this kind of scan is directly proportional to the number of rows in the
table.

Creating Indexes

Indexes are created on columns in order to speed retrieval of data.
The simplest form of the create index command is:

create index index_name
on table_name  ( column_name )

To create an index on the au_id column of the authors table, the
command is:

create index au_id_ind
on authors(au_id)

The index name must conform to the rules for identifiers. The
column and table name specify the column you want indexed and
the table that contains it.

You cannot create indexes on columns with bit, text, or image
datatypes.

You must be the owner of a table in order to create or drop an index.
The owner of a table can create or drop an index at any time, whether
or not there is data in the table. Indexes can be created on tables in
another database by qualifying the table name.



Transact-SQL User’s Guide 11-5

Adaptive Server Enterprise Release 11.5.x Creating Indexes

create index Syntax

The complete syntax of the create index command is:

create [unique] [clustered | nonclustered]
    index index_name
on [[ database .] owner .] table_name  ( column_name
    [, column_name ]...)
[with {{fillfactor | max_rows_per_page} = x,
    ignore_dup_key, sorted_data,
    [ignore_dup_row | allow_dup_row]}]
[on segment_name ] [with consumers = x]

The following sections explain the various options to the create index
command.

➤ Note
The on segment _name extension to create index allows you to place your

index on a segment that points to a specific database device or a collection

of database devices. Before creating an index on a segment, see a System

Administrator or the Database Owner for a list of segments that you can

use. Certain segments may be allocated to specific tables or indexes for

performance reasons or for other considerations.

Indexing More Than One Column: Composite Indexes

You have to specify two or more column names if you want to create
a composite index on the combined values in all the specified
columns.

Use composite indexes when two or more columns are best searched
as a unit, for example, the first and last names of authors in the
authors table. List the columns to be included in the composite index
in sort-priority order, inside the parentheses after the table name, like
this:

create index auth_name_ind
on authors(au_fname, au_lname)

The columns in a composite index do not have to be in the same
order as the columns in the create table statement. For example, the
order of au_lname and au_fname could be reversed in the preceding
index creation statement.

You can specify up to 16 columns in a single composite index. All the
columns in a composite index must be in the same table. The



11-6 Creating Indexes on Tables

Creating Indexes Adaptive Server Enterprise Release 11.5.x

maximum allowable size of the combined index values is 600 bytes.
That is, the sum of the lengths of the columns that make up the
composite index cannot exceed 600.

Using the unique Option

A unique index permits no two rows to have the same index value,
including NULL. The system checks for duplicate values when the
index is created, if data already exists, and checks each time data is
added or modified with an insert or update.

Specifying a unique index makes sense only when uniqueness is a
characteristic of the data itself. For example, you would not want a
unique index on a last_name column because there is likely to be
more than one “Smith” or “Wong” in tables of even a few hundred
rows.

On the other hand, a unique index on a column holding social
security numbers is a good idea. Uniqueness is a characteristic of the
data—each person has a different social security number.
Furthermore, a unique index serves as an integrity check. For
instance, a duplicate social security number probably reflects some
kind of error in data entry or on the part of the government.

If you try to create a unique index on existing data that includes
duplicate values, the command is aborted, and Adaptive Server
displays an error message that gives the first duplicate. You cannot
create a unique index on a column that contains null values in more
than one row; these are treated as duplicate values for indexing
purposes.

If you try to change data on which there is a unique index, the results
depend on whether you have used the ignore_dup_key option. See
“Using the ignore_dup_key Option” on page 11-11 for more
information.

You can use the unique keyword on composite indexes. This was not
done for the auth_name_ind index we just created.

Including IDENTITY Columns in Nonunique Indexes

The identity in nonunique index database option automatically includes
an IDENTITY column in a table’s index keys so that all indexes
created on the table are unique. This database option makes logically
nonunique indexes internally unique and allows them to process
updatable cursors and isolation level 0 reads.



Transact-SQL User’s Guide 11-7

Adaptive Server Enterprise Release 11.5.x Creating Indexes

To enable identity in nonunique indexes, enter:

sp_dboption pubs2, "identity in nonunique index", true

The table must already have an IDENTITY column for the identity in
nonunique index database option to work, either from a create table
statement or by setting the auto identity database option to true before
creating the table.

Use identity in nonunique index if you plan to use cursors and isolation
level 0 reads on tables with nonunique indexes. A unique index
ensures that the cursor is positioned at the correct row the next time
a fetch is performed on that cursor.

For example, after setting identity in nonunique index and auto identity to
true, suppose you create the following table, which has no indexes:

create table title_prices
(title varchar(80)  not null,
price  money null)

sp_help shows that the table contains an IDENTITY column,
SYB_IDENTITY_COL, which is automatically created by the auto
identity database option. If you create an index on the title column, use
sp_helpindex to verify that the index automatically includes the
IDENTITY column.

Using the fillfactor and max_rows_per_page Options

It is seldom necessary to include the fillfactor or max_rows_per_page
options in your create index statement. These options are provided for
fine-tuning performance. They are useful only when you are creating
a new index on existing data.

fillfactor

With the fillfactor option, the user can specify how full Adaptive
Server should make each index page. The amount of empty space on
an index page is important because when an index page fills up after
enough rows are added, the system must take the time to split it in
order to make room for new rows.

The default is 0, and this value is used when you do not specify a
fillfactor. A System Administrator can change the default with the
system procedure sp_configure. See the System Administration Guide for
more information about fillfactor.

User-specified fillfactor values are between 1 and 100.



11-8 Creating Indexes on Tables

Using Clustered or Nonclustered Indexes Adaptive Server Enterprise Release 11.5.x

Here is a create index statement that uses the fillfactor option:

create index postalcode_ind1
on authors (postalcode)
with fillfactor = 100

A fillfactor of 100 fills every page completely, and makes sense only
when you know that no index values in the table will ever change.

max_rows_per_page

The max_rows_per_page option limits the number of rows Adaptive
Server can put on each index page. A low max_rows_per_page value
reduces lock contention and makes sense only for frequently
accessed tables. Low values also cause the index to take up space.

The default is 0, and this value is used when you do not specify a
maximum. A user can change the value with the system procedure
sp_relimit.

User-specified max_rows_per_page values are between 1 and 256.

The following create index statement uses the max_rows_per_page option:

create index postalcode_ind2
on authors (postalcode)
with max_rows_per_page = 10

Using Clustered or Nonclustered Indexes

With a clustered index, Adaptive Server sorts rows on an ongoing
basis so that their physical order is the same as their logical (indexed)
order. The bottom or leaf level of a clustered index contains the
actual data pages of the table. Create the clustered index before
creating any nonclustered indexes, since nonclustered indexes are
automatically rebuilt when a clustered index is created.

By definition, there can be only one clustered index per table. It is
often created on the primary key—the column or columns that
uniquely identify the row.

Logically, the database’s design determines a primary key. You can
specify primary key constraints with the create table or alter table
statements to create an index and enforce the primary key attributes
for table columns. You can display information about constraints
with sp_helpconstraint.

Also, you can explicitly define primary keys, foreign keys, and
common keys (pairs of keys that are frequently joined) with the



Transact-SQL User’s Guide 11-9

Adaptive Server Enterprise Release 11.5.x Using Clustered or Nonclustered Indexes

system procedures sp_primarykey, sp_foreignkey, and sp_commonkey.
However, these procedures do not enforce the key relationships.

You can display information about defined keys with sp_helpkey and
about columns that are likely join candidates with sp_helpjoins.

For a definition of primary and foreign keys, see Chapter 16,
“Triggers: Enforcing Referential Integrity.” For complete information
on system procedures, see the Adaptive Server Reference Manual.

With a nonclustered index, the physical order of the rows is not the
same as their indexed order. The leaf level of a nonclustered index
contains pointers to rows on data pages. More precisely, each leaf
page contains an indexed value and a pointer to the row with that
value. In other words, a nonclustered index has an extra level
between the index structure and the data itself.

Each of the up to 249 nonclustered indexes permitted on a table can
provide access to the data in a different sorted order.

Finding data using a clustered index is almost always faster than
using a nonclustered index. In addition, a clustered index is
advantageous when many rows with contiguous key values are
being retrieved—that is, on columns that are often searched for
ranges of values. Once the row with the first key value is found, rows
with subsequent indexed values are guaranteed to be physically
adjacent, and no further searches are necessary.

If neither the clustered nor the nonclustered keyword is used, Adaptive
Server creates a nonclustered index.

Here is how the titleidind index on the title_id column of the titles
table is created. If you want to try this command, you must drop the
index first with drop index as follows:

drop index titles.titleidind

Then, create the clustered index:

create clustered index titleidind
on titles(title_id)

If you think you will often want to sort the people in the friends_etc
table, which you created in Chapter 7, by postal code, you should
create a nonclustered index on the postalcode column like this:

create nonclustered index postalcodeind
on friends_etc(postalcode)

A unique index would not make sense here, since some of your
contacts are likely to have the same postal code. A clustered index



11-10 Creating Indexes on Tables

Using Clustered or Nonclustered Indexes Adaptive Server Enterprise Release 11.5.x

would not be appropriate either, since the postal code is not the
primary key.

The clustered index in friends_etc should be a composite index on the
personal name and surname columns, for example:

create clustered index nmind
on friends_etc(pname, sname)

Creating Clustered Indexes on Segments

The create index command allows you to create the index on a
specified segment. Since the leaf level of a clustered index and its
data pages are the same by definition, creating a clustered index and
using the on segment_name extension moves a table from the device on
which it was created to the named segment.

See a System Administrator or the Database Owner before creating
tables or indexes on segments; certain segments may be reserved for
performance reasons.

Creating Clustered Indexes on Partitioned Tables

You can create a clustered index on a partitioned table if all of the
following conditions are true:

• The server is configured to run in parallel,

• The select into/bulkcopy/pllsort database option is set to true, and

• As many worker threads are available as the number of
partitions.

However, to speed recovery, dump the database after creating the
clustered index.

For more information about partitioned tables and creating clustered
indexes on them, see the System Administration Guide. See a System
Administrator or the Database Owner before creating a clustered
index on a partitioned table.



Transact-SQL User’s Guide 11-11

Adaptive Server Enterprise Release 11.5.x Specifying Index Options

Specifying Index Options

The index options ignore_dup_key, ignore_dup_row, and allow_dup_row
control what happens when a duplicate key or duplicate row is
created with insert or update. Table 11-1 shows which option to use,
based on the type of index:

Using the ignore_dup_key Option

If you try to insert a duplicate value into a column that has a unique
index, the command is canceled. You can avoid having a large
transaction canceled by including the ignore_dup_key option with a
unique index.

The unique index can be either clustered or nonclustered. When you
begin data entry, each attempt to insert a duplicate key is canceled
with an error message. After the cancellation, any transaction that
was active at the time may continue as though the update or insert had
never taken place. Nonduplicate keys are inserted normally.

You cannot create a unique index on a column that already includes
duplicate values, whether or not ignore_dup_key is set. If you attempt
to do so, Adaptive Server prints an error message and a list of the
duplicate values. You must eliminate duplicates before you create a
unique index on the column.

Here is an example of using the ignore_dup_key option:

create unique clustered index phone_ind
on friends_etc(phone)
with ignore_dup_key

Using the ignore_dup_row and allow_dup_row Options

ignore_dup_row and allow_dup_row are options for creating a nonunique,
clustered index. These options are not relevant when creating a
nonunique, nonclustered index. Since an Adaptive Server

Table 11-1: Index options

Index Type Options
Clustered ignore_dup_row | allow_dup_row
Unique clustered ignore_dup_key
Nonclustered None
Unique nonclustered ignore_dup_key
Unique nonclustered ignore_dup_row



11-12 Creating Indexes on Tables

Specifying Index Options Adaptive Server Enterprise Release 11.5.x

nonclustered index attaches a unique row identification number
internally, it never worries about duplicate rows—even for identical
data values.

ignore_dup_row and allow_dup_row are mutually exclusive.

A non-unique clustered index will allow duplicate keys, but will not
allow duplicate rows unless you specify allow_dup_row.

If allow_dup_row is set, you can create a new nonunique, clustered
index on a table that includes duplicate rows, and you can
subsequently insert or update duplicate rows.

If any index in the table is unique, the requirement for uniqueness—
the most stringent requirement—takes precedence over the
allow_dup_row option. Thus, allow_dup_row applies only to tables with
nonunique indexes. You cannot use this option if a unique clustered
index exists on any column in the table.

The ignore_dup_row option eliminates duplicates from a batch of data.
When you enter a duplicate row, Adaptive Server ignores that row
and cancels that particular insert or update with an informational error
message. After the cancellation, any transaction that may have been
active at the time continues as though the insert or update had never
taken place. Non-duplicate rows are inserted normally.

The ignore_dup_row applies only to tables with nonunique indexes: you
cannot use this keyword if a unique index exists on any column in
the table.

Table 11-2 illustrates how allow_dup_row and ignore_dup_row affect
attempts to create a nonunique, clustered index on a table that
includes duplicate rows, and to enter duplicate rows into a table.

Table 11-2: Duplicate row options in indexes

Option Has Duplicates Enter Duplicates

Neither option set create index command
fails.

Command fails.

allow_dup_row set Command completes. Command completes.

ignore_dup_row set Index created but
duplicate rows deleted;
error message.

Duplicates not
inserted/updated;
error message;
transaction completes.



Transact-SQL User’s Guide 11-13

Adaptive Server Enterprise Release 11.5.x Dropping Indexes

Using the sorted_data Option

The sorted_data option of create index speeds creation of an index when
the data in the table is already in sorted order, for example, when you
have used bcp to copy data that has already been sorted into an
empty table. The speed increase becomes significant on large tables
and increases to several times faster in tables larger than 1GB.

If sorted_data is specified but data is not in sorted order, an error
message displays and the command is aborted.

This option speeds indexing only for clustered indexes or unique
nonclustered indexes. Creating a nonunique nonclustered index
will, however, be successful unless there are rows with duplicate
keys. If there are rows with duplicate keys, an error message displays
and the command is aborted.

Certain other create index options require a sort even if sorted_data is
specified. See “Using the sorted_data Option to Speed Sorts” under
the create index description in the Adaptive Server Reference Manual.

Using the on segment_name Option

The on segment_name clause specifies a database segment name on
which the index is to be created. A nonclustered index can be created
on a different segment than the data pages. For example:

create index titleind
on titles(title)
on seg1

If you use segment_name when creating a clustered index, the table
containing the index moves to the segment you specify. See a System
Administrator or the Database Owner before creating tables or
indexes on segments; certain segments may be reserved for
performance reasons.

Dropping Indexes

The drop index command removes an index from the database. Its
syntax is:

drop index table_name . index_name
[, table_name . index_name ]...

When you use this command, Adaptive Server removes the specified
indexes from the database, reclaiming their storage space.



11-14 Creating Indexes on Tables

Determining What Indexes Exist on a Table Adaptive Server Enterprise Release 11.5.x

Only the owner of the index can drop it. drop index permission cannot
be transferred to other users. The drop index command cannot be used
on any of the system tables in the master database or in the user
database.

You might want to drop an index if it is not used for most or all of
your queries.

To drop the index phone_ind in the friends_etc table, the command is:

drop index friends_etc.phone_ind

Determining What Indexes Exist on a Table

To see the indexes that exist on a table, you can use the system
procedure sp_helpindex. Here is a report on the friends_etc table:

sp_helpindex friends_etc

index_name     index_description                index_keys
                                                 index_max_rows_per_page
------------- ----------------------------    -------------
                                                 -----------------------
nmind       clustered located on default    pname, sname
                                                0
postalcodeind nonclustered located on default postalcode
                                               0

(2 rows affected, return status = 0)

sp_help runs sp_helpindex at the end of its report.

The catalog stored procedure sp_statistics returns a list of indexes on a
table. For example:

sp_statistics friends_etc

table_qualifier               table_owner
         table_name                       non_unique
         index_qualifier                  index_name
         type   seq_in_index column_name                     collation
         cardinality pages
-------------------------------- --------------------------------
        -------------------------------- ----------
        -------------------------------- -------------------------------
        ------ ------------ -------------------------------- ---------
        ----------- -----------
pubs2                           dbo
        friends_etc                           NULL
        NULL                             NULL
             0          NULL NULL                            NULL
                   0           1
pubs2                            dbo



Transact-SQL User’s Guide 11-15

Adaptive Server Enterprise Release 11.5.x Updating Statistics About Indexes

         friends_etc                              1
         friends_etc                     nmind
            1           1 pname                        A
                   0           1
pubs2                             dbo
         friends_etc                               1
         friends_etc                      nmind
               1            2 sname                           A
                   0            1
pubs2                             dbo
         friends_etc                                1
         friends_etc                     postalcodeind
             3           1  postalcode                        A
                NULL       NULL

(4 rows affected, return status = 0)

In addition, if you follow the table name with “1”, the sp_spaceused
system procedure reports the amount of space used by a table and its
indexes. For example:

sp_spaceused friends_etc, 1

index_name           size       reserved   unused
-------------------- ---------- ---------- ----------
nmind                2 KB       32 KB      28 KB
postalcodeind        2 KB       16 KB      14 KB

name         rowtotal   reserved     data    index_size      unused
------------ ---------- ------------ ------- --------------- --------
friends_etc  1          48 KB        2 KB    4 KB            42 KB

(return status = 0)

Updating Statistics About Indexes

The update statistics command helps Adaptive Server make the best
decisions about which indexes to use when it processes a query, by
keeping it up to date about the distribution of the key values in the
indexes. Use update statistics when a large amount of data in an
indexed column has been added, changed, or deleted.

When Component Integration Services is enabled, update statistics can
generate accurate distribution statistics for remote tables. For more
information, see the Component Integration Services User’s Guide.

Permission to issue the update statistics command defaults to the table
owner and is not transferable. Its syntax is:

update statistics table_name  [ index_name ]



11-16 Creating Indexes on Tables

Updating Statistics About Indexes Adaptive Server Enterprise Release 11.5.x

If you do not specify an index name, the command updates the
distribution statistics for all the indexes in the specified table. Giving
an index name updates statistics for that index only.

You can find the names of indexes by using the sp_helpindex system
procedure. This procedure takes a table name as a parameter.

Here is how to list the indexes for the authors table:

sp_helpindex authors

index_name index_description index_keys index_max_rows_per_page
---------- ----------------- ----------  -----------------------
auidind clustered, unique au_id  0
aunmind nonclustered au_lname,   0
                              au_fname

(2 rows affected, return status = 0)

To update the statistics for all of the indexes, type:

update statistics authors

To update the statistics only for the index on the au_id column, type:

update statistics authors auidind

Because Transact-SQL does not require index names to be unique in
a database, you must give the name of the table with which the index
is associated. Adaptive Server runs update statistics automatically
when you create an index on existing data.

Updating Partition Statistics

Like the update statistics command for unpartitioned tables, the update
partition statistics command helps Adaptive Server make the best
decisions when it processes a query, by keeping it up to date about
the number of pages within the partitions. Use update partition statistics
when a large amount of data in a partitioned table has been added,
changed, or deleted.

Permission to issue the update partiton statistics command defaults to
the table owner and is not transferable. Its syntax is:

update partition statistics table_name

For example, suppose the authors table was partitioned as follows:

alter table authors partition 3

Then you run sp_helpartition to see how the partitions were
distributed:



Transact-SQL User’s Guide 11-17

Adaptive Server Enterprise Release 11.5.x Updating Statistics About Indexes

sp_helpartition authors

partitionid firstpage   controlpage ptn_data_pages
----------- ----------- ----------- --------------
          1         553         554              1
          2         817         816              1
          3        1009        1008              1

(3 rows affected, return status = 0)

Afterwards, you update the statistics for authors as follows:

update partition statistics authors

Using sp_helpartition on authors shows the following update:

partitionid firstpage   controlpage ptn_data_pages
----------- ----------- ----------- --------------
          1         553         554             10
          2         817         816              1
          3        1009        1008              1

(3 rows affected, return status = 0)

Dropping and re-creating a clustered index automatically
redistributes the data within partitions and updates the partition
statistics.



11-18 Creating Indexes on Tables

Updating Statistics About Indexes Adaptive Server Enterprise Release 11.5.x



Transact-SQL User’s Guide 12-1

12 Defining Defaults and
Rules for Data 12.

A default is a value that Adaptive Server inserts into a column if the
user does not explicitly enter a value for that column. In the world of
database management, a rule specifies what you are or are not
allowed to enter in a particular column or in any column with a given
user-defined datatype. You can use defaults and rules to help
maintain the integrity of data across the database.

This chapter discusses:

• How Defaults and Rules Work   12-1

• Creating Defaults   12-2

• Dropping Defaults   12-8

• Creating Rules   12-8

• Dropping Rules   12-13

• Getting Information About Defaults and Rules   12-14

How Defaults and Rules Work

You can define a default value for a table column or user-defined
datatype to automatically insert a value if a user does not explicitly
enter a value for it. You can also define rules for that table column or
datatype to restrict the types of values users can enter for it.

In a relational database management system, every data element,
that is, a particular column in a particular row, must contain some
value, even if that value is NULL. As discussed in Chapter 7,
“Creating Databases and Tables,” some columns do not accept the
null value. For those columns, some other value must be entered,
either a value explicitly entered by the user or a default entered by
Adaptive Server.

Defaults allow you to specify a value that Adaptive Server inserts if
no explicit value is entered in either a NULL or NOT NULL column.
For example, you can create a default that has the value “???” or the
value “fill in later.”

Rules enforce the integrity of data in ways not covered solely by a
column’s datatype. They can be connected to a specific column, to
several specific columns or to a specified, user-defined datatype.



12-2 Defining Defaults and Rules for Data

Creating Defaults Adaptive Server Enterprise Release 11.5.x

Every time a user enters a value with an insert or update statement,
Adaptive Server checks it against the most recent rule that has been
bound to the specified column. Data entered before the creation and
binding of a rule is not checked.

➤ Note
You can bind a character type rule to a numeric type column even though it

makes no sense to do so. Rules are checked when an insert or update is

attempted, not at the time of binding.

Comparing Defaults and Rules with Integrity Constraints

As an alternative to using defaults and rules, you can use the default
clause and the check integrity constraint of the create table statement to
accomplish some of the same tasks. However, they are specific for
that table and cannot be bound to columns of other tables or to user-
defined datatypes.

When you use the default clause of the create table or alter table
commands, you can specify the keyword user to insert the name of
the user who is inserting the data, null to insert the null value, or a
constant expression compatible with the datatype of the column. The
constant expression cannot include the name of any columns or other
database objects, but can include built-in functions. To replace the
user name or constant expression with a default you create, use the
alter table command to replace the default with null and then issue the
sp_bindefault command.

For more information about integrity constraints, see Chapter 7,
“Creating Databases and Tables.”

Creating Defaults

You can create or drop defaults at any time, before or after data has
been entered in a table. In general, to create defaults you:

1. Use the create default command to define the default itself.

2. Use the sp_bindefault system procedure to bind the default to the
appropriate table column or user-defined datatype.

3. Test the bound default by inserting data. Many errors in creating
and binding defaults can be caught only by testing with an insert
or update command.



Transact-SQL User’s Guide 12-3

Adaptive Server Enterprise Release 11.5.x Creating Defaults

You can drop defaults with the drop default command and remove
their association with sp_unbinddefault.

Be sure to check the following when you create and bind defaults:

• Make sure the column is large enough for the default. For
example, char(2) column will not hold a 17-byte string like
“Nobody knows yet.”

• Be careful when you put different defaults on a user-defined
datatype and on an individual column of that type. If you bind
the user-defined datatype default first and then the column
default, the column default replaces the user-defined datatype
default for the named column only. The user-defined datatype
default is bound to all the other columns having that datatype.

However, once you bind another default to a column that had a
default because of its type, that column ceases to be influenced
by defaults bound to its datatype. This issue is discussed in more
detail under “Binding Defaults” on page 12-4.

• Watch out for conflicts between defaults and rules. Be sure that
the default value is allowed by the rule; otherwise, the default can
be eliminated by the rule.

If a rule allows entries between 1 and 100, for example, and the
default is set to 0, the rule will reject the default entry. Either
change the default or change the rule.

create default Syntax

The syntax of the create default command is:

create default [owner .]default_name
as constant_expression

Default names must follow the rules for identifiers. You can create a
default in the current database only.

Within a database, default names must be unique for each user. For
example, you cannot create two defaults called phonedflt. However,
as “guest”, you can create a phonedflt even if dbo.phonedflt already
exists because the owner names make each one distinct.

Another example: Suppose you want to create a default value of
“Oakland” that can be used with the city column of friends_etc and
possibly with other columns or user datatypes. As you continue to
follow this example, you can use any city name that works for the
demographic distribution of the people you are planning to enter in
your personal table. To create the default, type:



12-4 Defining Defaults and Rules for Data

Creating Defaults Adaptive Server Enterprise Release 11.5.x

create default citydflt
as "Oakland"

After as, you can use any constant. Enclose character and date
constants in quotes; money, integer, and floating point constants do
not require them. Binary data must be preceded by “0x”, and money
data should be preceded by a dollar sign ($). The default value must
be compatible with the datatype of the column. You cannot use
“none,” for example, as a default for a numeric column, but 0 is
appropriate.

If you specify NOT NULL when you create a column and do not
associate a default with it, Adaptive Server produces an error
message whenever anyone fails to make an entry in that column.

Often, default values are created when a table is created. However, in
a session in which you want to enter many rows having the same
values in one or more columns, it may be convenient to create a
default tailored to that session before you begin.

Binding Defaults

After you have created a default, use the system procedure
sp_bindefault to bind the default to a column or user-defined datatype.
For example, suppose you create the following default:

create default advancedflt as "UNKNOWN"

Now, bind the default to the appropriate column or user-defined
datatype with the sp_bindefault system procedure.

sp_bindefault advancedflt, "titles.advance"

The default takes effect only if the user does not add an entry to the
advance column of the titles table. No entry is different from entering
a null value. A default can connect to a particular column, to a
number of columns, or to all columns in the database having a given
user-defined datatype.

➤ Note
To get the default, you must issue an insert or update command with a

column list that does not include the column that has the default.

The following restrictions apply to defaults:

• The default applies to new rows only. It does not retroactively
change existing rows. Of course, it takes effect only when no



Transact-SQL User’s Guide 12-5

Adaptive Server Enterprise Release 11.5.x Creating Defaults

entry is made. If you supply any value for the column, including
NULL, the default has no effect.

• You cannot bind a default to a system datatype, because the target
would be too broad.

• You cannot bind a default to a timestamp column, because
Adaptive Server generates values for timestamp columns.

• You cannot bind defaults to system tables. If you try to bind a
default to a system table, Adaptive Server displays an error
message and does not bind the default.

• You can bind a default to an IDENTITY column or to a user-
defined datatype with the IDENTITY property, but Adaptive
Server ignores such defaults. Each time you insert a row into a
table without specifying a value for the IDENTITY column,
Adaptive Server assigns a value that is 1 greater than the last
value assigned.

• If a default already exists on a column, you must remove it before
binding a new default. Use sp_unbindefault to remove defaults
created with sp_bindefault. Use alter table to remove defaults created
with create table.

To bind citydflt to the city column in friends_etc, type:

sp_bindefault citydflt, "friends_etc.city"

Notice that the table and column name are enclosed in quotes,
because of the embedded punctuation (the period).

If you create a special datatype for all city columns in every table in
your database, and bind citydflt to that datatype, “Oakland” will
appear only where city names are appropriate. For example, if the
user datatype is called citytype, here is how to bind citydflt to it:

sp_bindefault citydflt, citytype

To prevent existing columns or a specific user datatype from
inheriting the new default, use the futureonly parameter when binding
a default to a user datatype. However, do not use future only when
binding a default to a column. Here is how you create and bind the
new default “Berkeley” to the datatype citytype for use by new table
columns only:

create default newcitydflt as "Berkeley"

sp_bindefault newcitydflt, citytype, futureonly

“Oakland” will continue to appear as the default for any existing
table columns using citytype.



12-6 Defining Defaults and Rules for Data

Creating Defaults Adaptive Server Enterprise Release 11.5.x

If most of the people in your table live in the same zip code area, you
can create a default to save data entry time. Here is one, along with
its binding, that is appropriate for a section of Oakland:

create default zipdflt as "94609"

sp_bindefault zipdflt, "friends_etc.postalcode"

Here is the complete syntax for the sp_bindefault system procedure:

sp_bindefault defname, objname  [, futureonly]

The defname is the name of the default created with create default. The
objname is the name of the table and column, or of the user-defined
datatype, to which the default is to be bound. If the parameter is not
of the form table.column, it is assumed to be a user-defined datatype.

All columns of a specified user-defined datatype become associated
with the specified default unless you use the optional third
parameter, futureonly, which prevents existing columns of that user
datatype from inheriting the default.

➤ Note
Defaults cannot be bound to columns and used during the same batch.

sp_bindefault cannot be in the same batch as insert statements that invoke

the default.

Unbinding Defaults

Unbinding a default means disconnecting it from a particular
column or user-defined datatype. An unbound default is still stored
in the database and is available for future use. Use the system
procedure sp_unbindefault to remove the binding between a default
and a column or datatype.

Here is how you unbind the current default from the city column of
the friends_etc table:

execute sp_unbindefault "friends_etc.city"

At this point the default still exists, but it has no effect on the city
column because it is not connected to that column.

To unbind a default from the user-defined datatype citytype, use this
command:

sp_unbindefault citytype



Transact-SQL User’s Guide 12-7

Adaptive Server Enterprise Release 11.5.x Creating Defaults

The complete syntax of sp_unbindefault system is:

sp_unbindefault objname  [, futureonly]

If the objname parameter you give is not of the form table.column,
Adaptive Server assumes it is a user-defined datatype. When you
unbind a default from a user-defined datatype, the default is
unbound from all columns of that type unless you give the optional
second parameter futureonly, which prevents existing columns of that
datatype from losing their binding with the default.

How Defaults Affect Null Values

If you specify NOT NULL when you create a column and do not
create a default for it, Adaptive Server produces an error message
whenever anyone inserts a row and fails to make an entry in that
column.

When you drop a default for a NULL column, Adaptive Server
inserts NULL in that position each time you add rows without
entering any value for that column. When you drop a default for a
NOT NULL column, you get an error message when rows are added,
but no value for that column is explicitly entered.

Table 12-1 illustrates the relationship between the existence of a
default and the definition of a column as NULL or NOT NULL. The
entries in the table show the result:.

Table 12-1: Column definition and null defaults

Column Definition User Entry Result

Null and
default defined

No value

NULL value

Default used

NULL used

Null defined, no default
defined

No value

NULL value

NULL used

NULL used

Not null, default defined No value

NULL value

Default used

NULL used

Not null, no default
defined

No value

NULL value

Error

Error



12-8 Defining Defaults and Rules for Data

Dropping Defaults Adaptive Server Enterprise Release 11.5.x

After Creating a Default

After you create a default, the source text describing the default is
stored in the text column of the syscomments system table. In previous
releases of SQL Server, users often deleted the source text from
syscomments, in order to save disk space and remove confidential
information from this public area. Do not remove this information
from syscomments; doing so can cause problems for future upgrades
of Adaptive Server. Instead, encrypt the text in syscomments by using
the sp_hidetext system procedure, described in the Adaptive Server
Reference Manual. For more information, see “Compiled Objects” on
page 1-3.

Dropping Defaults

To remove a default from the database entirely, use the drop default
command. Be sure to unbind the default from all columns and user
datatypes before you drop it. (See “Unbinding Defaults” on page
12-6.) If you try to drop a default that is still bound, Adaptive Server
displays an error message and the drop default command fails.

Here is how to remove citydflt. First, you unbind it, for example:

sp_unbindefault citydft

Then you can drop citydft:

drop default citydflt

The complete syntax of the drop default command is:

drop default [ owner .] default_name
  [, [ owner .] default_name ] ...

A default can be dropped only by its owner.

Creating Rules

A rule lets you specify what users can or cannot enter into a
particular column or any column with a user-defined datatype. In
general, to create a rule you:

1. Use the create rule command to create the rule.

2. Use the system procedure sp_bindrule to bind the rule to a column
or user-defined datatype.



Transact-SQL User’s Guide 12-9

Adaptive Server Enterprise Release 11.5.x Creating Rules

3. Test the bound rule by inserting data. Many errors in creating
and binding rules can be caught only by testing with an insert or
update command.

You can unbind a rule from the column or datatype using the
sp_unbindrule system procedure or by binding a new rule to the
column or datatype.

create rule Syntax

The syntax of the create rule command is:

create rule [ owner .] rule_name
as condition_expression

Rule names must follow the rules for identifiers. You can create a rule
in the current database only.

Within a database, rule names must be unique for each user. For
example, a user cannot create two rules called socsecrule. However,
two different users can create a rule named socsecrule, because the
owner names make each one distinct.

Here is how the rule permitting five different pub_id numbers and
one dummy value (99 followed by any two digits) was created:

create rule pub_idrule
as @pub_id in ("1389", "0736", "0877", "1622", "1756")
or @pub_id like "99[0-9][0-9]"

The as clause contains the name of the rule’s argument, prefixed with
“@”, and the definition of the rule itself. The argument refers to the
column value that is affected by the update or insert statement.

In the preceding example, the argument is @pub_id, a convenient
name, since this rule is to be bound to the pub_id column. You can use
any name for the argument, but the first character must be “@.”
Using the name of the column or datatype to which the rule will be
bound can help you remember what it is for.

The rule definition can contain any expression that is valid in a where
clause, and can include arithmetic operators, comparison operators,
like, in, between, and so on. However, the rule definition cannot
reference any column or other database object directly. Built-in
functions that do not reference database objects can be included.

The following example creates a rule that forces the values you enter
to comply with a particular “picture.” In this case, each value entered
in the column must begin with “415” and be followed by 7 more
characters:



12-10 Defining Defaults and Rules for Data

Creating Rules Adaptive Server Enterprise Release 11.5.x

create rule phonerule
as @phone like "415_______"

To make sure that the ages you enter for your friends are between 1
and 120, but never 17, try this:

create rule agerule
as @age between 1 and 120 and @age ! = 17

Binding Rules

After you have created a rule, use the system procedure sp_bindrule to
link the rule to a column or user-defined datatype.

Here is the complete syntax for sp_bindrule:

sp_bindrule rulename , objname  [, futureonly]

The rulename is the name of the rule created with create rule. The
objname is the name of the table and column, or of the user-defined
datatype to which the rule is to be bound. If the parameter is not of
the form table.column, it is assumed to be a user datatype.

Use the optional third parameter, futureonly, only when binding a rule
to a user-defined datatype. All columns of a specified user-defined
datatype become associated with the specified rule unless you
specify futureonly, which prevents existing columns of that user
datatype from inheriting the rule. If the rule associated with a given
user-defined datatype has previously been changed, Adaptive
Server maintains the changed rule for existing columns of that user-
defined datatype.

The following restrictions apply to rules:

• You cannot bind a rule to a text, image, or timestamp datatype
column.

• Adaptive Server does not allow rules on system tables. If you try
to bind a rule to a system table, Adaptive Server returns an error
message and rejects the rule.

Rules Bound to Columns

You bind a rule to a column by using the sp_bindrule procedure with
the rule name and the quoted table name and column name. This is
how pub_idrule was bound to publishers.pub_id:

sp_bindrule pub_idrule, "publishers.pub_id"



Transact-SQL User’s Guide 12-11

Adaptive Server Enterprise Release 11.5.x Creating Rules

As another example, here is a rule to ensure that all the postal codes
you enter will have 946 as the first 3 digits:

create rule postalcoderule946
as @postalcode like "946[0-9][0-9]"

Bind it to the postalcode column in friends_etc like this:

sp_bindrule postalcoderule946,
"friends_etc.postalcode"

Rules cannot be bound to columns and used during the same batch.
sp_bindrule cannot be in the same batch as insert statements that invoke
the rule.

Rules Bound to User-Defined Datatypes

You cannot bind a rule to a system datatype, but you can bind one to
a user-defined datatype. To bind phonerule to a user-defined datatype
called p#, type:

sp_bindrule phonerule, "p#"

Precedence of Rules

Rules bound to columns always take precedence over rules bound to
user datatypes. Binding a rule to a column replaces a rule bound to
the user datatype of that column, but binding a rule to a datatype
does not replace a rule bound to a column of that user datatype.

A rule bound to a user-defined datatype is activated only when you
attempt to insert a value into, or update, a database column of the
user-defined datatype. Because rules do not test variables, be careful
not to assign a value to a user-defined datatype variable that would
be rejected by a rule bound to a column of the same datatype.

The following chart indicates the precedence when binding rules to
columns and user datatypes where rules already exist:

Table 12-2: Precedence of rules

New Rule Bound To Old Rule Bound To

User Datatype Column

User Datatype Replaces old rule No change

Column Replaces old rule Replaces old rule



12-12 Defining Defaults and Rules for Data

Creating Rules Adaptive Server Enterprise Release 11.5.x

When you are entering data that requires special temporary
constraints on some columns, you can create a new rule to help check
the data. For example, suppose that you are adding data to the debt
column of the friends_etc table. You know that all the debts you want
to record today are between $5 and $200. To avoid accidentally
typing an amount outside those limits, create a rule like this one:

create rule debtrule
as @debt = $0.00 or @debt between $5.00 and $200.00

The @debt rule definition allows for an entry of $0.00 in order to
maintain the default previously defined for this column.

Bind debtrule to the debt column like this:

sp_bindrule debtrule, "friends_etc.debt"

Rules and Null Values

You cannot define a column to allow nulls, and then override this
definition with a rule that prohibits null values. For example, if a
column definition specifies NULL and the rule specifies the
following, an implicit or explicit NULL does not violate the rule:

@val in (1,2,3)

The column definition overrides the rule, even a rule that specifies:

@val is not null

After Defining a Rule

After you define a rule, the source text describing the rule is stored in
the text column of the syscomments system table. In previous releases
of SQL Server, users often deleted the source text from syscomments,
in order to save disk space and remove confidential information
from this public area. Do not remove this information from
syscomments; doing so can cause problems for future upgrades of
Adaptive Server. Instead, encrypt the text in syscomments by using
the sp_hidetext system procedure, described in the Adaptive Server
Reference Manual. For more information, see “Compiled Objects” on
page 1-3.



Transact-SQL User’s Guide 12-13

Adaptive Server Enterprise Release 11.5.x Dropping Rules

Unbinding Rules

Unbinding a rule disconnects it from a particular column or user-
defined datatype. An unbound rule’s definition is still stored in the
database and is available for future use.

There are two ways to unbind a rule:

• Use the system procedure sp_unbindrule to remove the binding
between a rule and a column or user-defined datatype.

• Use the system procedure sp_bindrule to bind a new rule to that
column or datatype. The old one is automatically unbound.

Here is how to disassociate debtrule (or any other currently bound
rule) from friends_etc.debt:

sp_unbindrule "friends_etc.debt"

The rule is still in the database, but it has no connection to
friends_etc.debt.

To unbind a rule from the user-defined datatype p#, use this
command:

sp_unbindrule "p#"

The complete syntax of sp_unbindrule is:

sp_unbindrule objname  [, futureonly]

If the objname parameter you use is not of the form “table.column”,
Adaptive Server assumes it is a user-defined datatype. When you
unbind a rule from a user-defined datatype, the rule is unbound from
all columns of that type unless:

• You give the optional second parameter futureonly, which prevents
existing columns of that datatype from losing their binding with
the rule, or

• The rule on a column of that user-defined datatype has been
changed so that its current value is different from the rule being
unbound.

Dropping Rules

To remove a rule from the database entirely, use the drop rule
command. Be sure to unbind the rule from all columns and user
datatypes before you drop it. If you try to drop a rule that is still
bound, Adaptive Server displays an error message, and the drop rule



12-14 Defining Defaults and Rules for Data

Getting Information About Defaults and Rules Adaptive Server Enterprise Release 11.5.x

command fails. However, you need not unbind and then drop a rule
in order to bind a new one. Simply bind a new one in its place.

To remove phonerule after unbinding it:

drop rule phonerule

The complete syntax for drop rule is:

drop rule [ owner .] rule_name
  [, [ owner .] rule_name ] ...

After you drop a rule, new data entered into the columns that
previously were governed by it goes in without these constraints.
Existing data is not affected in any way.

A rule can be dropped only by its owner.

Getting Information About Defaults and Rules

The system procedure sp_help, when used with a table name, displays
the rules and defaults that are bound to columns. This example
displays information about the authors table in the pubs2 database,
including the rules and defaults:

sp_help authors

The sp_help procedure also reports on a rule bound to a user-defined
datatype. To check whether a rule is bound to the user-defined
datatype p#, use this command:

sp_help "p#"

The sp_helptext procedure reports the definition (the create statement)
of a rule or default.

If the source text of a default or rule was encrypted using sp_hidetext,
Adaptive Server displays a message advising you that the text is
hidden. For information about hiding source text, see sp_hidetext in
the Adaptive Server Reference Manual.

If the System Security Officer has reset the allow select on
syscomments.text column parameter with the system procedure
sp_configure (as required to run Adaptive Server in the evaluated
configuration), you must be the creator of the default or rule or a
System Administrator to view the text of a default or rule through
sp_helptext. For more information, see evaluated configuration in the
Adaptive Server Glossary.



Transact-SQL User’s Guide 13-1

13 Using Batches and
Control-of-Flow Language 13.

Transact-SQL allows you to group a series of statements as a batch,
either interactively or from an operating system file. You can also use
the control-of-flow constructs offered by Transact-SQL to connect the
statements using programming-like constructs.

A variable is an entity that is assigned a value. This value can change
during the batch or stored procedure in which the variable is used.
Adaptive Server has two kinds of variables: local and global. Local
variables are user-defined, whereas global variables are supplied by
the system and are predefined.

This chapter discusses:

• What Are Batches and Control-of-Flow Language?   13-1

• Rules Associated with Batches   13-2

• Using Control-of-Flow Language   13-7

• Local Variables   13-31

• Global Variables   13-36

What Are Batches and Control-of-Flow Language?

Up to this point, each example in the Transact-SQL User’s Guide has
consisted of an individual statement. You submit statements to
Adaptive Server one at a time, entering the statement and receiving
results interactively.

Adaptive Server can also process multiple statements submitted as a
batch, either interactively or from a file. A batch or batch file is a set
of Transact-SQL statements that are submitted together and executed
as a group, one after the other. A batch is terminated by an end-of-
batch signal. With the isql utility, this is the word “go” on a line by
itself. For details on isql, see the the Utility Programs manual for your
platform.

Here is an example of a batch that contains two Transact-SQL
statements:

select count(*) from titles
select count(*) from authors
go

Technically, a single Transact-SQL statement can constitute a batch,
but it is more common to think of a batch as containing multiple



13-2 Using Batches and Control-of-Flow Language

Rules Associated with Batches Adaptive Server Enterprise Release 11.5.x

statements. Frequently, a batch of statements is written to an
operating system file before being submitted to isql.

Transact-SQL provides special keywords called control-of-flow
language that allow the user to control the flow of execution of
statements. Control-of-flow language can be used in single
statements, in batches, in stored procedures, and in triggers.

Without control-of-flow language, separate Transact-SQL statements
are performed sequentially, as they occur. Correlated subqueries,
discussed in Chapter 5, “Subqueries: Using Queries Within Other
Queries,” are a partial exception. Control-of-flow language permits
statements to connect and to relate to each other using
programming-like constructs.

Control-of-flow language, such as if...else for conditional performance
of commands and while for repetitive execution, lets you refine and
control the operation of Transact-SQL statements. The Transact-SQL
control-of-flow language transforms standard SQL into a very high-
level programming language.

Rules Associated with Batches

There are rules governing which Transact-SQL statements can be
combined into a single batch. These batch rules are as follows:

• Before referencing objects in a database, issue a use statement for
that database. For example:

use master
go
select count(*)
from sysdatabases
go

• You cannot combine the following database commands with
other statements in a batch:

- create procedure

- create rule

- create default

- create trigger

• You can combine the following database commands with other
Transact-SQL statements in a batch:

- create database (except that you cannot create a database and
create or access objects in the new database in a single batch)



Transact-SQL User’s Guide 13-3

Adaptive Server Enterprise Release 11.5.x Rules Associated with Batches

- create table

- create index

- create view

• You cannot bind rules and defaults to columns and use them in
the same batch. sp_bindrule and sp_bindefault cannot be in the same
batch as insert statements that invoke the rule or default.

• You cannot drop an object and then reference or re-create it in the
same batch.

• If a table already exists, you cannot re-create it in a batch, even if
you include a test in the batch for the table’s existence.

Adaptive Server compiles a batch before executing it. During
compilation, Adaptive Server makes no permission checks on
objects, such as tables and views, that are referenced by the
batch. Permission checks occur when Adaptive Server executes
the batch. An exception to this is when Adaptive Server accesses
a database other than the current one. In this case, Adaptive
Server displays an error message at compilation time without
executing any statements in the batch.

• Assume that your batch contains these statements:

select * from taba

select * from tabb

select * from tabc

select * from tabd

If you have the necessary permissions for all statements except
the third one (select * from tabc), Adaptive Server returns an error
message for that statement and returns results for all the others.

Examples of Using Batches

The examples in this section illustrate batches using the format of the
isql utility, which has a clear end-of-batch signal—the word “go” on a
line by itself. Here is a batch that contains two select statements in a
single batch:

select count(*) from titles
select count(*) from authors
go



13-4 Using Batches and Control-of-Flow Language

Rules Associated with Batches Adaptive Server Enterprise Release 11.5.x

-------------
          18

(1 row affected)
-------------
          23

(1 row affected)

You can create a table and reference it in the same batch. This batch
creates a table, inserts a row into it, and then selects everything from
it:

create table test
  (column1 char(10), column2 int)
insert test
  values ("hello", 598)
select * from test
go

(1 row affected)
column1  column2
-------  -------
hello        598

(1 row affected)

You can combine a use statement with other statements, as long as the
objects you reference in subsequent statements are in the database in
which you started. This batch selects from a table in the master
database and then opens the pubs2 database. The batch begins by
making the master database current; afterwards, pubs2 is the current
database.

use master
go

select count(*) from sysdatabases
use pubs2
go

-------------
           6

(1 row affected)

You can combine a drop statement with other statements as long as
you do not reference or re-create the dropped object in the same
batch. The final batch example combines a drop statement with a select
statement:



Transact-SQL User’s Guide 13-5

Adaptive Server Enterprise Release 11.5.x Rules Associated with Batches

drop table test
select count(*) from titles
go

------------
         18

(1 row affected)

If there is a syntax error anywhere in the batch, none of the
statements is executed. For example, here is a batch with a typing
error in the last statement, and the results:

select count(*) from titles
select count(*) from authors
slect count(*) from publishers
go

Msg 156, Level 15, State 1:
Line 3:
Incorrect syntax near the keyword ’count’.

Batches that violate a batch rule also generate error messages. Here
are some examples of illegal batches:

create table test
    (column1 char(10), column2 int)
insert test
    values ("hello", 598)
select * from test
create procedure testproc as
    select column1 from test
go

Msg 111, Level 15, State 7:
Line 6:
CREATE PROCEDURE must be the first command in a
query batch.

create default phonedflt as "UNKNOWN"
sp_bindefault phonedflt, "authors.phone"
go

Msg 102, Level 15, State 1:
Procedure 'phonedflt', Line 2:
Incorrect syntax near 'sp_bindefault'.

The next batch will work if you are already in the database you
specify in the use statement. If you try it from another database such
as master, however, you will get an error message.



13-6 Using Batches and Control-of-Flow Language

Rules Associated with Batches Adaptive Server Enterprise Release 11.5.x

use pubs2
select * from titles
go

Msg 208, Level 16, State 1:
Server ’hq’, Line 2:
titles not found. Specify owner.objectname or use
sp_help to check whether the object exists
(sp_help may produce lots of output)

drop table test
create table test
(column1 char(10), column2 int)
go

Msg 2714, Level 16, State 1:
Server ’hq’, Line 2:
There is already an object named ’test’ in the
database.

Batches Submitted As Files

You can submit one or more batches of Transact-SQL statements to
isql from an operating system file. A file can include more than one
batch, that is, more than one collection of statements, each
terminated by the word “go.”

For example, an operating system file might contain the following
three batches:

use pubs2
go
select count(*) from titles
select count(*) from authors
go
create table hello
   (column1 char(10), column2 int)
insert hello
   values ("hello", 598)
select * from hello
go



Transact-SQL User’s Guide 13-7

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

Here are the results of submitting this file to the isql utility:

-------------
           18

(1 row affected)
-------------
           23

(1 row affected)
column1      column2
---------    ---------
hello              598

(1 row affected)

See isql in the Utility Programs manual for your platform for
environment-specific information on running batches stored in files.

Using Control-of-Flow Language

Use control-of-flow language with interactive statements, in batches,
and in stored procedures. The control-of-flow and related keywords
and their functions are:

Table 13-1: Control-of-flow and related keywords

Keyword Function

if Defines conditional execution.

…else Defines alternate execution when the if condition is
false.

case Defines conditional expressions using when…then
statements instead of if…else.

begin Beginning of a statement block.

…end End of a statement block.

while Repeat performance of statements while condition is
true.

break Exit from the end of the next outermost while loop.

…continue Restart while loop.

declare Declare local variables.

goto label Go to label:, a position in a statement block.

return Exit unconditionally.



13-8 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

if...else

The keyword if, with or without its companion else, introduces a
condition that determines whether the next statement is executed.
The Transact-SQL statement executes if the condition is satisfied, that
is, if it returns TRUE.

The else keyword introduces an alternate Transact-SQL statement
that executes when the if condition returns FALSE.

The syntax for if and else is:

if
boolean_expression
statement

[else
   [if boolean_expression ]

statement  ]

A Boolean expression is an expression that returns TRUE or FALSE.
It can include a column name, a constant, any combination of column
names and constants connected by arithmetic or bitwise operators,
or a subquery, as long as the subquery returns a single value. If the
Boolean expression contains a select statement, the select statement
must be enclosed in parentheses, and it must return a single value.

Here is an example of using if alone:

if exists (select postalcode from authors
         where postalcode = "94705")
print "Berkeley author"

If one or more of the zip codes in the authors table has the value
“94705”, the message “Berkeley author” is printed. The select
statement in this example returns a single value, either TRUE or

waitfor Set delay for command execution.

print Print a user-defined message or local variable on
user’s screen.

raiserror Print a user-defined message or local variable on
user’s screen and set a system flag in the global
variable @@error.

/* comment */
or
--comment

Insert a comment anywhere in a Transact-SQL
statement.

Table 13-1: Control-of-flow and related keywords (continued)

Keyword Function



Transact-SQL User’s Guide 13-9

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

FALSE, because it is used with the keyword exists. The exists keyword
functions here just as it does in subqueries. See Chapter 5,
“Subqueries: Using Queries Within Other Queries.”

Here is an example, using both if and else, that tests for the presence
of user-created objects, all of which have ID numbers that are greater
than 50. If user objects exist, the else clause selects their names, types,
and ID numbers.

if (select max(id) from sysobjects) < 50
   print "There are no user-created objects in
this database."
else
   select name, type, id from sysobjects
   where id > 50 and type = "U"

(0 rows affected)

 name   type   id
------------   ----   ---------
 authors       U       16003088
 publishers    U       48003202
 roysched      U       80003316
 sales         U      112003430
 salesdetail   U      144003544
 titleauthor   U      176003658
 titles        U      208003772
 stores        U      240003886
 discounts     U      272004000
 au_pix        U      304004114
 blurbs        U      336004228
 friends_etc   U      704005539
 test          U      912006280
 hello         U     1056006793

(14 rows affected)

if...else constructs are frequently used in stored procedures where
they test for the existence of some parameter.

if tests can nest within other if tests, either within another if or
following an else. The expression in the if test can return only one
value. Also, for each if...else construct, there can be one select
statement for the if and one for the else. To include more than one
select statement, use the begin...end keywords. The maximum number
of if tests you can nest varies, depending on the complexity of the
select statements (or other language constructs) you include with
each if...else construct.



13-10 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

case Expression

case expression simplifies many conditional Transact-SQL
constructs. Instead of using a series of if statements, case expression
allows you to use a series of conditions that return the appropriate
values when the conditions are met. case expression is ANSI SQL92
compliant.

With case expression, you can:

• Simplify queries and write more efficient code

• Convert data between the formats used in the database (such as
int) and the format used in an application (such as char)

• Return the first non-null value in a list of columns

• Compare two values and return the first value if the values do not
match, or a NULL value if the values do match

• Write queries that avoid division by 0

case expression includes the keywords case, when, then, coalesce, and
nullif. coalesce and nullif are an abbreviated form of case expression. For
details on case expression syntax, see the Adaptive Server Reference
Manual.

Using case Expression for Alternative Representation

Using case expression you can represent data in a manner that is
more meaningful to the user. For example, the pubs2 database stores
a 1 or a 0 in the contract column of the titles table to indicate the status
of the book’s contract. However, in your application code or for user
interaction, you may prefer to use the words “Contract” or “No
Contract” to indicate the status of the book. To select the type from
the titles table using the alternative representation:

select title, "Contract Status" =
    case
        when type = 1 then "Contract"
        when type = 0 then "No Contract"
    end
from titles



Transact-SQL User’s Guide 13-11

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

title                                   Contract Status
-----                                   ---------------
The Busy Executive’s Database Guide     Contract
Cooking with Computers: Surreptitio     Contract
You Can Combat Computer Stress!         Contract
. . .
The Psychology of Computer Cooking      No Contract
. . .
Fifty Years in Buckingham Palace        Contract
Sushi, Anyone?                          Contract

(18 rows affected)

case and Division by Zero

case expression allows you to write queries that avoid division by
zero (called exception avoidance). For example, if you are dividing the
total_sales column for each book by the advance column, the query
would result in division by zero:

select title_id, total_sales, advance,
total_sales/advance from titles

title_id   total_sales          advance
-------    -----------          ---------     ------
BU1032     4095                  5,000.00     0.82
BU1111     3876                  5,000.00     0.78
BU2075     18722                10,125.00     1.85
BU7832     4095                  5,000.00     0.82

Divide by zero occurred.

Division by zero results when the query attempts to divide the
total_sales (2032) of title_id MC2222 by the advance (0.00).

case expression avoids this by not allowing the zero to figure in the
equation. Instead, when the query comes across the zero, it returns a
predefined value, rather than performing the division. For example:

select title_id, total_sales, advance, "Cost Per Book" =
     case
           when advance != 0
           then convert(char, total_sales/advance)
           else "No Books Sold"
     end
from titles



13-12 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

title_id       total_sales     advance          Cost Per Book
--------       -----------     ----------       -------------
BU1032                4095       5,000.00                0.82
BU1111                3876       5,000.00                0.78
BU2075               18722      10,125.00                1.85
BU7832                4095       5,000.00                0.82
MC2222                2032           0.00       No Books Sold
MC3021               22246      15,000.00                1.48
MC3026                NULL           NULL       No Books Sold
. . .
TC3218                 375       7,000.00                0.05
TC4203               15096       4,000.00                3.77
TC7777                4095       8,000.00                0.51

(18 rows affected)

The division by zero for title_id MC2222 no longer prevents the query
from running. Also, the null values for MC3021 do not prevent the
query from running.

case Expression Results

The rules for determining the datatype of a case expression are based
on the same rules that determine the datatype of a column in a union
operation. A case expression has a series of alternative result
expressions (R1, R2, ..., Rn in the example below) which are specified
by the then and else clauses. For example:

case
    when search_condition1  then R1
    when search_condition2  then R2
    ...
    else Rn
end

The datatypes of the result expressions R1, R2, ..., Rn are used to
determine the overall datatype of case. The same rules that determine
the datatype of a column of a union that specifies n tables, and has the
expressions R1, R2, …, Rn as the ith column, also determine the
datatype of a case expression. The datatype of case is determined in
the same manner as would be determined by the following query:

select...R1...from ...
union
select...R2...from...
union...
...
select...Rn...from...



Transact-SQL User’s Guide 13-13

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

Not all datatypes are compatible, and if you specify two datatypes
that are incompatible (for example, char and int), your Transact-SQL
query will fail. For more information about the union-datatype rules,
see “Datatype Conversion Functions” in the Adaptive Server Reference
Manual.

case Expression Requires At Least One Non-NULL Result

At least one result from the case expression must return a value other
than the keyword NULL. The following query:

select price,
    case
        when title_id like "%" then NULL
        when pub_id like "%" then NULL
    end
from titles

returns the error message:

All result expressions in a CASE expression must
not be NULL

case and Search Conditions

Using case expression, you can test for conditions that determine the
result set.

The syntax is:

case
    when search_condition1  then result1
    when search_condition2  then result2
    . . .
    when search_conditionn  then resultn
    else resultx
end

where search_condition is a logical expression, and result is an
expression.

If search_condition1 is true, the value of case is result1; if
search_condition1 is not true, boolean_condition2 is checked. If
search_condition2 is true, the value of case is result2, and so on. If none
of the search conditions are true, the value of case is resultx. The else
clause is optional. If it is not used, the default is else NULL. end
indicates the end of the case expression.



13-14 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

At least one result must be non-null. All the result expressions must
be compatible. For information about determining the datatype of
case, see “case Expression Results” on page 13-12.

The total sales of each book for each store are kept in the salesdetail
table. If you want to show a series of ranges for the book sales , you
could track how each book sold at each store, using the following
ranges:

• Books that sold less than 1000 (low-selling books)

• Books that sold between 1000 and 3000 (medium-selling books)

• Books that sold more than 3000 (high-selling books)

You would write the following query:

select stor_id, title_id, qty, "Book Sales Catagory" =
     case
           when qty <= 1000
              then "Low Sales Book"
           when qty >= 1000 and qty <= 3000
              then "Medium Sales Book"
           when qty > 3000
           then "High Sales Book"
     end
from salesdetail
group by title_id

stor_id     title_id      qty      Book Sales Catagory
-------     --------      ----     ------------------
5023        BU1032        200      Low Sales Book
5023        BU1032       1000      Low Sales Book
7131        BU1032        200      Low Sales Book
. . .
7896        TC7777         75      Low Sales Book
7131        TC7777         80      Low Sales Book
5023        TC7777       1000      Low Sales Book
7066        TC7777        350      Low Sales Book
5023        TC7777       1500      Medium Sales Book
5023        TC7777       1090      Medium Sales Book

(116 rows affected)

The following example selects the titles from the titleauthor table
according to the author’s royalty percentage (royaltyer) and then
assigns each title with a value of High, Medium, or Low royalty:



Transact-SQL User’s Guide 13-15

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

select title, royaltyper, "Royalty Category" =
   case
      when (select avg(royaltyper) from titleauthor tta
        where t.title_id = tta.title_id) > 60 then "High Royalty"
      when (select avg(royaltyper) from titleauthor tta
        where t.title_id = tta.title_id) between 41 and 59
      then "Medium Royalty"
      else "Low Royalty"
   end
from titles t, titleauthor ta
where ta.title_id = t.title_id
order by title

title                                  royaltyper   royalty Category
-------                                ----------   ----------------
But Is It User Friendly?               100          High Royalty
Computer Phobic and Non-Phobic Ind     25           Medium Royalty
Computer Phobic and Non-Phobic Ind     75           Medium Royalty
Cooking with Computers: Surreptiti     40           Medium Royalty
Cooking with Computers: Surreptiti     60           Medium Royalty
Emotional Security: A New Algorith     100          High Royalty
. . .
Sushi, Anyone?                         40           Low Royalty
The Busy Executive’s Database Guide    40           Medium Royalty
The Busy Executive’s Database Guide    60           Medium Royalty
The Gourmet Microwave                  75           Medium Royalty
You Can Combat Computer Stress!        100          High Royalty

(25 rows affected)

case and Value Comparisons

This form of case is used for value comparisons. It allows only an
equality check between two values; no other comparisons are
allowed (for example, you cannot use “<“, “>”, “!=” or any other
comparison operator).

The syntax is:

case valueT
    when value1  then result1
    when value2  then result2
    . . .
    when valuen  then resultn
    else result x
end

where value and result are expressions.

If valueT equals value1, the value of the case is result1. If valuetT does
not equal value1, valueT is compared to value2. If valueT equals



13-16 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

value2, then the value of the case is result2, and so on. If valueT does
not equal the value of value1 through valuen, the value of the case is
resultx.

At least one result must be non-null. All the result expressions must
be compatible. Also, all values must be compatible. For information
about determining the datatype of case, see “case Expression
Results” on page 13-12.

The syntax described above is equivalent to:

case
    when valueT  = value 1 then result1
    when valueT  = value 2 then result2
    . . .
    when valueT  = value n then resultn
    else resultx
end

which is the same format used for case and search conditions (see
“case and Search Conditions” on page 13-13 for more information
about this syntax).

The following example selects the title and pub_id from the titles table
and specifies the publisher for each book based on the pub_id:

select title, pub_id, "Publisher" =
   case pub_id
     when "0736" then "New Age Books"
     when "0877" then "Binnet & Hardley"
     when "1389" then "Algodata Infosystems"
     else "Other Publisher"
   end
from titles
order by pub_id

title                          pub_id       Publisher
-----                          ------       -------------
Life Without Fear                0736       New Age Books
Is Anger the Enemy?              0736       New Age Books
You Can Combat Computer          0736       New Age Books
. . .
Straight Talk About Computers    1389       Algodata Infosystems
The Busy Executive’s Database    1389       Algodata Infosystems
Cooking with Computers: Surre    1389       Algodata Infosystems

(18 rows affected)

Which is equivalent to the following query, which uses a case and
search condition syntax:



Transact-SQL User’s Guide 13-17

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

select title, pub_id, "Publisher" =
   case
     when pub_id = "0736" then "New Age Books"
     when pub_id = "0877" then "Binnet & Hardley"
     when pub_id = "1389" then "Algodata Infosystems"
     else "Other Publisher"
   end
from titles
order by pub_id

coalesce

coalesce examines a series of values (value1, value2, ..., valuen) and
returns the first non-null value. The syntax of coalesce is:

coalesce( value1 , value 2, ..., valuen )

Where value1, value2, ..., valuen are expressions. If value1 is non-null,
the value of coalesce is value1; if value1 is null, value2 is examined, and
so on. The examination continues until a non-null value is found. The first
non-null value becomes the value ofcoalesce.

At least one value must be non-null. All the value expressions must be
compatible. For information about determining the datatype of
coalesce, see “case Expression Results” on page 13-12.

When you use coalesce, Adaptive Server translates it internally to the
following format:

case
    when value1  is not NULL then value1
    when value2  is not NULL then value 2
    . . .
    when valuen-1  is not NULL then valuen-1
    else valuen
end

where valuen-1 refers to the next to last value, before the final value,
valuen.

The example below uses coalesce to determine whether a store
orders a low quantity (more than 100 but less than 1000) or a high
quantity of books (more than 1000):

select stor_id, discount, "Quantity" =
    coalesce(lowqty, highqty)
from discounts



13-18 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

stor_id discount    Quantity
------- --------   ---------   ----
NULL               10.500000   NULL
NULL                6.700000    100
NULL               10.000000   1001
8042                5.000000   NULL

(4 rows affected)

nullif

nullif compares two values; if the values are equal, nullif returns a null
value. If the two values are not equal, nullif returns the value of the
first value. This form is useful for finding any missing, unknown, or
inapplicable information that is stored in an encoded form. For
example, values that are unknown are sometimes historically stored
as -1. Using nullif, you can replace the -1 values with null and get the
null behavior defined by Transact SQL. The syntax is:

nullif( value1 , value2 )

If value1 equals value2, nullif returns NULL. If value1 does not equal
value2, nullif returns value1. value1 and value2 are expressions, and
their datatypes must be comparable

At least one result must be non-null. All the result expressions must
be compatible. For information about determining the datatype of
nullif, see “case Expression Results” on page 13-12.

When you use nullif, Adaptive Server translates it internally to the
following format:

case
    when value 1 = value2  then NULL
    else value 1
end

For example, the titles table uses the value “UNDECIDED” to
represent books whose type category is not yet determined. The
following query performs a search on the titles table for book types;
any book whose type is “UNDECIDED” is returned as type NULL
(the following output is reformatted for display purposes):

select title, "type"=
   nullif(type, "UNDECIDED")
from titles



Transact-SQL User’s Guide 13-19

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

title                                  type
-----                                  --------
The Busy Executive’s Database Guide    business
Cooking with Computers: Surreptiti     business
You Can Combat Computer Stress!        business
. . .
The Psychology of Computer Cooking     NULL
Fifty Years in Buckingham Palace K     trad_cook
Sushi, Anyone?                         trad_cook

(18 rows affected)

Notice that The Psychology of Computing is stored in the table as
“UNDECIDED”, but the query returns it as type NULL.

begin...end

The begin and end keywords enclose a series of statements so that they
are treated as a unit by control-of-flow constructs like if...else. A series
of statements enclosed by begin and end is called a statement block.

The syntax of begin...end is:

begin
statement block

end

Here is an example:

if (select avg(price) from titles) < $15
begin
   update titles
   set price = price * 2

   select title, price
   from titles
   where price > $28
end

Without begin and end, the if condition applies only to the first
Transact-SQL statement. The second statement executes
independently of the first.

begin...end blocks can nest within other begin...end blocks.



13-20 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

while and break...continue

while sets a condition for the repeated execution of a statement or
statement block. The statements are executed repeatedly as long as
the specified condition is true.

The syntax is:

while boolean_expression
statement

In this example, the select and update statements are repeated, as long
as the average price remains less than $30:

while (select avg(price) from titles) < $30
begin
   select title_id, price
   from titles
   where price > $20
   update titles
   set price = price * 2
end

(0 rows affected)

title_id    price
------      -------
PC1035      22.95
PS1372      21.59
TC3218      20.95

(3 rows affected)
(18 rows affected)
(0 rows affected)
title_id    price
------      -------
BU1032      39.98
BU1111      23.90
BU7832      39.98
MC2222      39.98
PC1035      45.90
PC8888      40.00



Transact-SQL User’s Guide 13-21

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

PS1372      43.18
PS2091      21.90
PS3333      39.98
TC3218      41.90
TC4203      23.90
TC7777      29.98

(12 rows affected)
(18 rows affected)
(0 rows affected)

break and continue control the operation of the statements inside a while
loop. break causes an exit from the while loop. Any statements that
appear after the end keyword that marks the end of the loop are
executed. continue causes the while loop to restart, skipping any
statements after continue but inside the loop. break and continue are
often activated by an if test.

The syntax for break...continue is:

while boolean expression
begin
    statement

[ statement ]...
    break

[ statement ]...
    continue

[ statement ]...
end

Here is an example using while, break, continue, and if that reverses the
inflation caused in the previous examples. As long as the average
price remains more than $20, all the prices are cut in half. The
maximum price is then selected. If it is less than $40, the while loop is
exited; otherwise, it will try to loop again. The continue allows the print
statement to execute only when the average is more than $20. After
the while loop ends, a message and a list of the highest priced books
are printed.



13-22 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

while (select avg(price) from titles) > $20
begin
    update titles
        set price = price / 2
    if (select max(price) from titles) < $40
        break
    else
        if (select avg(price) from titles) < $20
            continue
    print "Average price still over $20"
end

select title_id, price from titles
    where price > $20

print "Not Too Expensive"

(18 rows affected)
(0 rows affected)
(0 rows affected)
Average price still over $20
(0 rows affected)
(18 rows affected)
(0 rows affected)

title_id    price
--------    -------
PC1035        22.95
PS1372        21.59
TC3218        20.95

(3 rows affected)
Not Too Expensive

If two or more while loops are nested, break exits to the next outermost
loop. First, all the statements after the end of the inner loop execute.
Then, the outer loop restarts.

declare and Local Variables

Local variables are declared, named, and typed with the declare
keyword and are assigned an initial value with a select statement.
They must be declared, assigned a value, and used within the same
batch or procedure.

See “Local Variables” on page 13-31 for more information.



Transact-SQL User’s Guide 13-23

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

goto

The goto keyword causes unconditional branching to a user-defined
label. goto and labels can be used in stored procedures and batches. A
label’s name must follow the rules for identifiers and must be
followed by a colon when it is first given. It is not followed by a colon
when it is used with goto.

Here is the syntax:

label :
goto label

Here is an example that uses goto and a label, a while loop, and a local
variable as a counter:

declare @count smallint
select @count = 1
restart:
print "yes"
select @count = @count + 1
while @count <=4
   goto restart

As in this example, goto is usually made dependent on a while or if test
or some other condition, in order to avoid an endless loop between
goto and the label.

return

The return keyword exits from a batch or procedure unconditionally.
It can be used at any point in a batch or a procedure. When used in
stored procedures, return can accept an optional argument to return a
status to the caller. Statements after return are not executed.

The syntax is simply:

return [ int_expression ]

Here is an example of a stored procedure that uses return as well as
if...else and begin...end:



13-24 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

create procedure findrules @nm varchar(30) = null
as
if @nm is null
begin
  print "You must give a user name"
  return
end
else
begin
   select sysobjects.name, sysobjects.id,
sysobjects.uid
   from sysobjects, master..syslogins
   where master..syslogins.name = @nm
   and sysobjects.uid = master..syslogins.suid
   and sysobjects.type = "R"
end

If no user name is given as a parameter when findrules is called, the
return keyword causes the procedure to exit after a message has been
sent to the user’s screen. If a user name is given, the names of the
rules owned by the user are retrieved from the appropriate system
tables.

return is similar to the break keyword used inside while loops.

Examples using return values are included in Chapter 14, “Using
Stored Procedures.”

print

The print keyword, used in the previous example, displays a user-
defined message or the contents of a local variable on the user’s
screen. The local variable must be declared within the same batch or
procedure in which it is used. The message itself can be up to 255
bytes long.

The syntax is:

print { format_string  | @ local_variable  |
       @@ global _variable } [, arg_list ]

Here is another example:

if exists (select postalcode from authors
   where postalcode = "94705")
print "Berkeley author"



Transact-SQL User’s Guide 13-25

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

Here is how to use print to display the contents of a local variable:

declare @msg char(50)
select @msg = "What’s up, doc?"
print @msg

print recognizes placeholders in the character string to be printed out.
Format strings may contain up to 20 unique placeholders in any
order. These placeholders are replaced with the formatted contents
of any arguments that follow format_string when the text of the
message is sent to the client.

To allow reordering of the arguments when format strings are
translated to a language with a different grammatical structure, the
placeholders are numbered. A placeholder for an argument appears
in this format: %nn!. The components are a percent sign, followed by
an integer from 1 to 20, followed by an exclamation point. The
integer represents the placeholder position in the string in the
original language. “%1!” is the first argument in the original version,
“%2!” is the second argument, and so on. Indicating the position of
the argument in this way makes it possible to translate correctly even
when the order in which the arguments appear in the target
language is different from their order in the source language.

For example, assume the following is an English message:

%1! is not allowed in %2!.

The German version of this message is:

%1! ist in %2! nicht zulässig.

The Japanese version of the message is:

In this example, “%1!” in all three languages represents the same
argument, and “%2!” also represents a single argument in all three
languages. This example shows the reordering of the arguments that
is sometimes necessary in the translated form.

You cannot skip placeholder numbers when using placeholders in a
format string, although placeholders do not have to be used in
numerical order.   For example, you cannot have placeholders 1 and
3 in a format string without having placeholder 2 in the same string.

The optional arg_list may be a series of either variables or constants.
An argument can be any datatype except text or image; it is converted
to the char datatype before it is included in the final message. If no
argument list is provided, the format string must be the message to
be printed, without any placeholders.



13-26 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

The maximum output string length of format_string plus all
arguments after substitution is 512 bytes.

raiserror

raiserror both displays a user-defined error or local variable message
on the user’s screen and sets a system flag to record the fact that an
error has occurred. As with print, the local variable must be declared
within the same batch or procedure in which it is used. The message
can be up to 255 characters long.

Here is the syntax for raiserror:

raiserror error_number
[{ format_string  | @ local_variable }] [, arg_list ]
[ extended_value = extended_value [{,
extended_value = extended_value }...]]

The error_number is placed in the global variable @@error, which
stores the error number most recently generated by Adaptive Server.
Error numbers for user-defined error messages must be greater than
17,000. If the error_number is between 17,000 and 19,999, and
format_string is missing or empty (““), Adaptive Server retrieves
error message text from the sysmessages table in the master database.
These error messages are used chiefly by system procedures.

The length of the format_string alone is limited to 255 bytes; the
maximum output length of format_string plus all arguments is 512
bytes. Local variables used for raiserror messages must be char or
varchar. The format_string or variable is optional. If one is not
included, Adaptive Server uses the message corresponding to the
error_number from sysusermessages in the default language. As with
print, you can substitute variables or constants defined by arg_list in
the format_string.

As an option, you can define extended error data for use by an Open
Client™ application (when you include extended_values with
raiserror). For more information about extended error data, see your
Open Client documentation or raiserror in the Adaptive Server Reference
Manual.

Use raiserror instead of print when you want an error number stored in
@@error. For example, here is how you could use raiserror in the
procedure findrules:

raiserror 99999 "You must give a user name"

The severity level of all user-defined error messages is 16. This level
indicates that the user has made a nonfatal mistake.



Transact-SQL User’s Guide 13-27

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

Creating Messages for print and raiserror

You can call messages from sysusermessages for use by either print or
raiserror with the system procedure sp_getmessage. Use the system
procedure sp_addmessage to create a set of messages.

The example that follows uses sp_addmessage, sp_getmessage, and print
to install a message in sysusermessages in both English and German,
retrieve it for use in a user-defined stored procedure, and print it.

/*
** Install messages
** First, the English (langid = NULL)
*/
set language us_english
go
sp_addmessage 25001,
  "There is already a remote user named '%1!' for
remote server '%2!'."
go
/* Then German*/
sp_addmessage 25001,
         "Remotebenutzername '%1!' existiert
bereits auf dem Remoteserver '%2!'.","german"
go

create procedure test_proc @remotename varchar(30),
            @remoteserver varchar(30)
as
        declare @msg varchar(255)
        declare @arg1 varchar(40)
        /*
        ** check to make sure that there is not
        ** a @remotename for the @remoteserver.
        */
        if exists (select *
            from master.dbo.sysremotelogins l,
                master.dbo.sysservers s
            where l.remoteserverid = s.srvid



13-28 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

                and s.srvname = @remoteserver
                and l.remoteusername = @remotename)
        begin
            exec sp_getmessage 25001, @msg output
            select @arg1=isnull(@remotename, "null")
            print @msg, @arg1, @remoteserver
            return (1)
        end
return(0)
go

You can also bind user-defined messages to constraints, as described
in “Creating Error Messages for Constraints” on page 7-29.

To drop a user-defined message, use the system procedure
sp_dropmessage. To change a message, drop it with sp_dropmessage and
add it again with sp_addmessage.

waitfor

The waitfor keyword specifies a specific time of day, a time interval, or
an event at which the execution of a statement block, stored
procedure, or transaction is to occur.

Here is the syntax:

waitfor {delay " time " | time " time " | errorexit |
processexit | mirrorexit}

where delay time instructs Adaptive Server to wait until the specified
period of time has passed. time time instructs Adaptive Server to wait
until the specified time, given in one of the acceptable formats for
datetime data.

However, you cannot specify dates—the date portion of the datetime
value is not allowed. The time you specify with waitfor time or waitfor
delay can include hours, minutes, and seconds—up to a maximum of
24 hours. Use the format “hh:mm:ss”.

For example, the following command instructs Adaptive Server to
wait until 4:23 p.m.:

waitfor time "16:23"

This command instructs Adaptive Server to wait 1 hour and 30
minutes:

waitfor delay "01:30"



Transact-SQL User’s Guide 13-29

Adaptive Server Enterprise Release 11.5.x Using Control-of-Flow Language

For a review of the acceptable formats for time values, see “Entering
Times” on page 8-5.

errorexit instructs Adaptive Server to wait until a process terminates
abnormally. processexit waits until a process terminates for any
reason. mirrorexit waits until a read or write to a mirrored device fails.

You can use waitfor errorexit with a procedure that kills the abnormally
terminated process in order to free system resources that would
otherwise be taken up by an infected process. To find out which
process is infected, check the sysprocesses table with the system
procedure sp_who.

The following example instructs Adaptive Server to wait until 2:20
p.m. Then, it updates the chess table with the next move and executes
a stored procedure called sendmessage, which inserts a message into
one of Judy’s tables notifying her that a new move now exists in the
chess table.

begin
waitfor time "14:20"
insert chess(next_move)
values("Q-KR5")
execute sendmessage "Judy"
end

To send the message to Judy after 10 seconds instead of waiting until
2:20, substitute this waitfor statement in the preceding example:

waitfor delay "0:00:10"

After you give the waitfor command, you cannot use your connection
to Adaptive Server until the time or event that you specified occurs.

Comments

The comment notation attaches comments to statements, batches,
and stored procedures. Comments are not executed.

A comment can be inserted on a line by itself or at the end of a
command line. Two comment styles are available: the “slash-asterisk”
style:

/* text of comment */

and the “double-hyphen” style:

-- text of comment

There is no maximum length for comments.



13-30 Using Batches and Control-of-Flow Language

Using Control-of-Flow Language Adaptive Server Enterprise Release 11.5.x

Slash-Asterisk Style Comments

The /* style comment is a Transact-SQL extension. Multiple-line
comments are acceptable, as long as each comment starts with “/*”
and ends with “*/”. Everything between “/*” and “*/” is treated as
part of the comment. The /* form permits nesting.

A stylistic convention often used for multiple-line comments is to
begin the first line with “/*” and subsequent lines with “**”. The
comment is ended with “*/” as usual:

select * from titles
/* A comment here might explain the rules
** associated with using an asterisk as
** shorthand in the select list.*/
where price > $5

This procedure includes a couple of comments:

/* this procedure finds rules by user name*/
create procedure findmyrule @nm varchar(30) = null
as
if @nm is null
begin
  print "You must give a user name"
  return
  print "I have returned"
/* this statement follows return,
** so won’t be executed */
end
else      /* print the rule names and IDs, and

the user ID */
  select sysobjects.name, sysobjects.id,
     sysobjects.uid
  from sysobjects, master..syslogins
  where  master..syslogins.name = @nm
  and sysobjects.uid = master..syslogins.suid
  and sysobjects.type = "R"

Double-Hyphen Style Comments

This comment style begins with two consecutive hyphens followed
by a space (-- ) and terminates with a newline character. Therefore,
multiple-line comments are not possible.

Adaptive Server does not interpret two consecutive hyphens within
a string literal or within a /*-style comment as signaling the
beginning of a comment.



Transact-SQL User’s Guide 13-31

Adaptive Server Enterprise Release 11.5.x Local Variables

To represent an expression that contains two consecutive minus
signs (binary followed by unary), put a space or an opening
parenthesis between the two hyphens.

Following are examples:

-- this procedure finds rules by user name
create procedure findmyrule @nm varchar(30) = null
as
if @nm is null
begin
  print "You must give a user name"
  return
  print "I have returned"
-- each line of a multiple-line comment
-- must be marked separately.
end
else        -- print the rule names and IDs, and
        -- the user ID
  select sysobjects.name, sysobjects.id,
     sysobjects.uid
  from sysobjects, master..syslogins
  where  master..syslogins.name = @nm
  and sysobjects.uid = master..syslogins.suid
  and sysobjects.type = "R"

Local Variables

Local variables are often used in a batch or stored procedure as
counters for while loops or if...else blocks. When they are used in stored
procedures, they are declared for automatic, non-interactive use by
the procedure when it executes. You can use variables nearly
anywhere the Transact-SQL syntax indicates that an expression can
be used, such as char_expr, integer_expression, numeric_expr or
float_expr.

Declaring Local Variables

Use the following syntax to declare a local variable’s name and
datatype:

declare @ variable_name datatype
   [, @ variable_name datatype ]...

The variable name must be preceded by the @ sign and conform to
the rules for identifiers. Specify either a user-defined datatype or a
system-supplied datatype other than text, image, or sysname.



13-32 Using Batches and Control-of-Flow Language

Local Variables Adaptive Server Enterprise Release 11.5.x

It is more efficient in terms of memory and performance to write:

declare @a int, @b char(20), @c float

than to write:

declare @a int
declare @b char(20)
declare @c float

Local Variables and select Statements

When you declare a variable, it has the value NULL. Assign values to
local variables with a select statement. Here is the syntax:

select @ variable_name  = { expression  |
( select_statement ) } [, @ variable  =
{ expression  | ( select_statement ) } ...]
[from clause ] [where clause ] [group by clause ]
[having clause ] [order by clause ] [compute clause ]

Similar to declare statements, it is more efficient to write:

select @a = 1, @b = 2, @c = 3

than to write:

select @a = 1
select @b = 2
select @c = 3

Do not use a single select statement to assign a value to one variable
and then to another whose value is based on the first. Doing so can
yield unpredictable results. For example, the following queries both
try to find the value of @c2. The first query yields NULL, while the
second query yields the correct answer, 0.033333:

/* this is wrong*/
declare @c1 float, @c2 float
select @c1 = 1000/1000, @c2 = @c1/30
select @c1, @c2

/* do it this way */
declare @c1 float, @c2 float
select @c1 = 1000/1000
select @c2 = @c1/30
select @c1 , @c2

The select statement that assigns values to variables has only that one
mission. It cannot also be used to return data to the user. The first
select statement in the following example assigns the maximum price



Transact-SQL User’s Guide 13-33

Adaptive Server Enterprise Release 11.5.x Local Variables

to the local variable @veryhigh; the second select statement is needed
to display the value:

declare @veryhigh money
select @veryhigh = max(price)
   from titles
select @veryhigh

If the select statement that assigns values to a variable returns more
than one value, the last value that is returned is assigned to the
variable. The following query assigns the variable the last value
returned by “select advance from titles”.

declare @m money
select @m = advance from titles
select @m

(18 rows affected)
------------------------

          8,000.00

(1 row affected)

The assignment statement indicates how many rows were affected
(returned) by the select statement.

If a select statement that assigns values to a variable fails to return any
values, the variable is left unchanged by the statement.

Local variables can be used as arguments to print or raiserror.

If you are using variables in an update statement, see “Using the set
Clause with update” on page 8-27.

Local Variables and update Statements

You can assign variables directly in an update statement. You do not
need to use a select statement to assign a value to a variable. When
you declare a variable, it has the value NULL. Here is the syntax:



13-34 Using Batches and Control-of-Flow Language

Local Variables Adaptive Server Enterprise Release 11.5.x

update [[ database .] owner .]{ table_name  | view_name }
set [[[ database .] owner .]{ table_name . |  view_name .}]
    column_name1  =
        { expression1  | null | ( select_statement )} |

variable_name1  = { expression1  | null}
    [, column_name2  = { expression2  | null |
        ( select_statement )}]... |

[, variable_name2  = { expression2  | null}]...
[from [[ database .] owner .]{ table_name  | view_name }
        [, [[ database .] owner .]{ table_name  |

view_name }]]...
[where search_conditions ]

Local Variables and Subqueries

A subquery that assigns a value to the local variable must return only
one value. Here are some examples:

declare @veryhigh money
select @veryhigh = max(price)
   from titles
if @veryhigh > $20
   print "Ouch!"

declare @one varchar(18), @two varchar(18)
select @one = "this is one", @two = "this is two"
if @one = "this is one"
   print "you got one"
if @two = "this is two"
   print "you got two"
else print "nope"

declare @tcount int, @pcount int
select @tcount = (select count(*) from titles),
   @pcount = (select count(*) from publishers)
select @tcount, @pcount

Local Variables and while Loops and if…else Blocks

The following example uses local variables in a counter in a while
loop, for doing matching in a where clause, in an if statement, and for
setting and resetting values in select statements:



Transact-SQL User’s Guide 13-35

Adaptive Server Enterprise Release 11.5.x Local Variables

/* Determine if a given au_id has a row in au_pix*/
/* Turn off result counting */
set nocount on
/* declare the variables */
declare @c int,
        @min_id varchar(30)
/*First, count the rows*/
select @c = count(*) from authors
/* Initialize @min_id to "" */
select @min_id = ""
/* while loop executes once for each authors row */
while @c > 0
begin
        /*Find the smallest au_id*/
        select @min_id = min(au_id)
            from authors
            where au_id > @min_id
        /*Is there a match in au_pix?*/
        if exists (select au_id
            from au_pix
            where au_id = @min_id)
            begin
            print "A Match! %1!", @min_id
        end
      select @c = @c -1  /*decrement the counter */
end

Variables and Null Values

Local variables are assigned the value NULL when they are declared,
and may be assigned the null value by a select statement. The special
meaning of NULL requires that the comparison between null-value
variables and other null values follow special rules.

Table 13-2 shows the results of comparisons between null-value
columns and null-value expressions using different comparison
operators. (An expression can be a variable, a literal, or a
combination of variables and literals and arithmetic operators.)

Table 13-2: Comparing null values

Type of Comparison Using the =
Operator

Using the <, >, <=, !=,
!<, !>, or <> Operator

Comparing column_value to
column_value

FALSE FALSE



13-36 Using Batches and Control-of-Flow Language

Global Variables Adaptive Server Enterprise Release 11.5.x

For example, this test:

declare @v int, @i int
if @v = @i select "null = null, true"
if @v > @i select "null > null, true"

shows that only the first comparison returns true:

-----------------
null = null, true

(1 row affected)

This example returns all the rows from the titles table where the
advance has the value NULL:

declare @m money
select title_id, advance
from titles
where advance = @m

title_id advance
-------- ----------------
MC3026              NULL
PC9999              NULL

(2 rows affected)

Global Variables

Global variables are system-supplied, predefined variables. They are
distinguished from local variables by the two @ signs preceding their
names—for example, @@error. The two @ signs are considered part of
the identifier used to define the global variable.

Users cannot create global variables and cannot update the value of
global variables directly in a select statement. If a user declares a local
variable that has the same name as a global variable, that variable is
treated as a local variable.

Comparing column_value to
expression

TRUE FALSE

Comparing expression to
column_value

TRUE FALSE

Comparing expression to
expression

TRUE FALSE

Table 13-2: Comparing null values (continued)



Transact-SQL User’s Guide 13-37

Adaptive Server Enterprise Release 11.5.x Global Variables

Transactions and Global Variables

Some global variables provide information to use in transactions.

Checking for Errors with @@error

The @@error global variable is commonly used to check the error
status of the most recently executed batch in the current user session.
@@error contains 0 if the last transaction succeeded; otherwise
@@error contains the last error number generated by the system. A
statement such as if @@error != 0 followed by return causes an exit on
error.

Every Transact-SQL statement, including print statements and if tests,
resets @@error, so the status check must immediately follow the batch
whose success is in question.

The @@sqlstatus global variable has no effect on @@error output. See
“Checking the Status from the Last fetch” on page 13-38 for details.

Checking IDENTITY Values with @@identity

@@identity contains the last value inserted into an IDENTITY column
in the current user session. @@identity is set each time an insert, select
into, or bcp attempts to insert a row into a table. (The value of
@@identity is not affected by the failure of an insert, select into, or bcp
statement or the rollback of the transaction that contained it.
@@identity retains the last value inserted into an IDENTITY column,
even if the statement that inserted it fails to commit.)

If a statement inserts multiple rows, @@identity reflects the
IDENTITY value for the last row inserted. If the affected table does
not contain an IDENTITY column, @@identity is set to 0.

Checking the Transaction Nesting Level with @@trancount

@@trancount contains the nesting level of transactions in the current
user session. Each begin transaction in a batch increments the
transaction count. When you query @@trancount in chained
transaction mode, its value is never 0 because the query
automatically initiates a transaction.



13-38 Using Batches and Control-of-Flow Language

Global Variables Adaptive Server Enterprise Release 11.5.x

Checking the Transaction State with @@transtate

@@transtate contains the current state of a transaction after a
statement executes in the current user session. However, unlike
@@error, @@transtate does not get cleared for each batch. @@transtate
may contain the values in Table 13-3:

@@transtate only changes due to execution errors. Syntax and
compile errors do not affect the value of @@transtate.

Checking the Nesting Level with @@nestlevel

@@nestlevel contains the nesting level of current execution with the
user session, initially 0. Each time a stored procedure or trigger calls
another stored procedure or trigger, the nesting level is incremented.
If the maximum of 16 is exceeded, the transaction aborts.

Checking the Status from the Last fetch

@@sqlstatus contains status information resulting from the last fetch
statement for the current user session. @@sqlstatus may contain the
following values:

Table 13-3: @@transtate values

Value Meaning

0 Transaction in progress: an explicit or implicit transaction is in effect;
the previous statement executed successfully.

1 Transaction succeeded: the transaction completed and committed its
changes.

2 Statement aborted: the previous statement was aborted; no effect on
the transaction.

3 Transaction aborted: the transaction aborted and rolled back any
changes.

Table 13-4: @@sqlstatus values

Value Meaning

0 The fetch statement completed successfully.

1 The fetch statement resulted in an error.



Transact-SQL User’s Guide 13-39

Adaptive Server Enterprise Release 11.5.x Global Variables

@@sqlstatus has no effect on @@error output. For example, the
following batch sets @@sqlstatus to 1 by causing the fetch statement to
result in an error. However, @@error reflects the number of the error
message, not the @@sqlstatus output:

declare csr1 cursor
for select * from sysmessages
for read only

open csr1

begin
    declare @xyz varchar(255)
    fetch csr1 into @xyz
    select error = @@error
    select sqlstatus = @@sqlstatus
end

Msg 553, Level 16, State 1:
Line 3:
The number of parameters/variables in the FETCH
INTO clause does not match the number of columns
in cursor 'csr1' result set.

At this point, the @@error global variable is set to 553, the number of
the last generated error. @@sqlstatus is set to 1.

Global Variables Affected by set Options

set options can customize the display of results, show processing
statistics, and provide other diagnostic aids for debugging your
Transact-SQL programs.

2 There is no more data in the result set. This warning occurs if the
current cursor position is on the last row in the result set and the
client submits a fetch command for that cursor.

Table 13-4: @@sqlstatus values (continued)

Value Meaning



13-40 Using Batches and Control-of-Flow Language

Global Variables Adaptive Server Enterprise Release 11.5.x

Table 13-5 lists the global variables that contain information about
the session options controlled by the set command.

The @@options global variable contains a hexadecimal representation
of the session’s set options.

Table 13-6 lists set options and values that work with @@options.

Table 13-5: Global variables containing session options

Global Variable Description

@@char_convert Contains 0 if character set conversion not in effect.
Contains 1 if character set conversion is in effect.

@@isolation Contains the current isolation level of the Transact-
SQL program. @@isolation takes the value of the
active level (0, 1 or 3).

@@options Contains a hexadecimal representation of the
session’s set options.

@parallel_degree Contains the current maximum parallel degree
setting.

@@rowcount Contains the number of rows affected by the last
query. @@rowcount is set to 0 by any command that
does not return rows, such as an if statement. With
cursors, @@rowcount represents the cumulative
number of rows returned from the cursor result set
to the client, up to the last fetch request.

@scan_parallel_degree Contains the current maximum parallel degree
setting for nonclustered index scans.

@@textsize Contains the limit on the number of bytes of text or
image data a select returns. Default limit is 32K bytes
for isql; the default depends on the client software.
Can be changed for a session with set textsize.

@@tranchained Contains the current transaction mode of the
Transact-SQL program. @@tranchained returns 0 for
unchained or 1 for chained.

Table 13-6: set options and values for @@options

Numeric
Value

Hexidecimal
Value set Option

 4 0x04 showplan

 5 0x05 noexec



Transact-SQL User’s Guide 13-41

Adaptive Server Enterprise Release 11.5.x Global Variables

For more information on session options, see the set command in the
Adaptive Server Reference Manual.

Language and Character Set Information in Global Variables

Table 13-7 lists the global variables that contain information about
languages and character sets. For more information on languages
and character sets, see Chapter 13, “Configuring Character Sets, Sort
Orders, and Languages,” in the System Administration Guide.

 6 0x06 arithignore

 8 0x08 arithabort

 13 0x0D control

 14 0x0E offsets

 15 0x0F  statistics io and statistics time

 16 0x10 parseonly

 18 0x12 procid

 20 0x14 rowcount

 23 0x17 nocount

Table 13-7: Global variables for language and character sets

Global Variable Description

@@char_convert Contains 0 if character set conversion not in effect.
Contains 1 if character set conversion is in effect.

@@client_csid Contains client’s character set ID. Set to -1 if the
client character set has never been initialized;
otherwise, it contains the most recently used client
character set’s id from syscharsets.

@@client_csname Contains client’s character set name. Set to NULL if
the client character set has never been initialized;
otherwise, it contains the name of the most recently
used character set.

@@langid Defines the local language ID of the language
currently in use, as specified in syslanguages.langid.

Table 13-6: set options and values for @@options (continued)

Numeric
Value

Hexidecimal
Value set Option



13-42 Using Batches and Control-of-Flow Language

Global Variables Adaptive Server Enterprise Release 11.5.x

Global Variables for Monitoring System Activity

Many global variables report on system activity occurring from the
last time Adaptive Server was started. The system procedure
sp_monitor displays the current values of some of the global variables.

Table 13-8 lists the global variables that monitor system activity, in
the order returned by sp_monitor. For complete information on
sp_monitor, see the Adaptive Server Reference Manual.

@@language Defines the name of the language currently in use, as
specified in syslanguages.name.

@@maxcharlen Contains the maximum length, in bytes, of multibyte
characters in the default character set.

@@ncharsize Contains the average length, in bytes, of a national
character.

@@char_convert Contains 0 if character set conversion not in effect.
Contains 1 if character set conversion is in effect.

Table 13-8: Global variables that monitor system activity

Global Variable Description

@@connections Contains the number of logins or attempted logins.

@@cpu_busy Contains the amount of time, in ticks, that the CPU has
spent doing Adaptive Server work since the last time
Adaptive Server was started.

@@idle Contains the amount of time, in ticks, that Adaptive
Server has been idle since it was last started.

@@io_busy Contains the amount of time, in ticks, that Adaptive
Server has spent doing input and output operations.

@@packet_errors Contains the number of errors that occurred while
Adaptive Server was sending and receiving packets.

@@pack_received Contains the number of input packets read by Adaptive
Server since it was last started.

@@pack_sent Contains the number of output packets written by
Adaptive Server since it was last started.

@@total_errors Contains the number of errors that occurred while
Adaptive Server was reading or writing.

Table 13-7: Global variables for language and character sets (continued)

Global Variable Description



Transact-SQL User’s Guide 13-43

Adaptive Server Enterprise Release 11.5.x Global Variables

Server Information Stored in Global Variables

Table 13-9 lists the global variables that contain miscellaneous
information about Adaptive Server.

@@total_read Contains the number of disk reads by Adaptive Server
since it was last started.

@@total_write Contains the number of disk writes by Adaptive Server
since it was last started.

Table 13-9:  Global variables containing Adaptive Server information

Global Variable Description

@@cis_version Contains the date and version of Component
Integration Services, if it is installed.

@@max_connections Contains the maximum number of simultaneous
connections that can be made with Adaptive Server
in the current computer environment. You can
configure Adaptive Server for any number of
connections less than or equal to the value of
@@max_connections with the number of user
connections configuration parameter.

@@procid Contains the stored procedure ID of the currently
executing procedure.

@@servername Contains the name of this Adaptive Server. Define a
server name with sp_addserver, and then restart
Adaptive Server.

@@spid Contains the server process ID number of the
current process.

@@thresh_hysteresis Contains the decrease in free space required to
activate a threshold. This amount, also known as the
hysteresis value, is measured in 2K database pages.
It determines how closely thresholds can be placed
on a database segment.

@@timeticks Contains the number of microseconds per tick. The
amount of time per tick is machine-dependent.

@@version Contains the date of the current release of Adaptive
Server.

Table 13-8: Global variables that monitor system activity (continued)

Global Variable Description



13-44 Using Batches and Control-of-Flow Language

Global Variables Adaptive Server Enterprise Release 11.5.x

Global Variables and text and image Data

text and image values can be quite large. When the select list includes
text and image values, the limit on the length of the data returned
depends on the setting of the @@textsize global variable, which
contains the limit on the number of bytes of text or image data a select
returns. The default limit is 32K bytes for isql; the default depends on
the client software. Change the value for a session with set textsize.

Table 13-10 lists the global variables that contain information about
text pointers. Note that these global variables are session-based. For
more information about text pointers, see “Changing text and image
Data” on page 8-30.

Table 13-10: Text pointer information stored in global variables

Global Variable Description

@@textcolid Contains the column ID of the column referenced by
@@textptr.

@@textdbid Contains the database ID of a database containing an
object with the column referenced by @@textptr.

@@textobjid Contains the object ID of an object containing the
column referenced by @@textptr.

@@textptr Contains the text pointer of the last text or image
column inserted or updated by a process. (Do not
confuse this variable with the textptr function.)

@@textts Contains the text timestamp of the column referenced
by @@textptr.



Transact-SQL User’s Guide 14-1

14 Using Stored Procedures 14.

A stored procedure is a named collection of SQL statements or
control-of-flow language. You can create stored procedures for
commonly used functions and to increase performance. Adaptive
Server also provides system procedures to perform administrative
tasks and to update the system tables.

This chapter discusses:

• How Stored Procedures Work   14-1

• Creating and Executing Stored Procedures   14-5

• Returning Information from Stored Procedures   14-18

• Restrictions Associated with Stored Procedures   14-26

• Renaming Stored Procedures   14-27

• Using Stored Procedures As Security Mechanisms   14-28

• Dropping Stored Procedures   14-28

• System Procedures   14-29

• Getting Information About Stored Procedures   14-32

You can also create and use extended stored procedures to call
procedural language functions from Adaptive Server. See Chapter
15, “Using Extended Stored Procedures.”

How Stored Procedures Work

When you run a stored procedure, Adaptive Server prepares an
execution plan so that the procedure’s execution is very fast. Stored
procedures can:

• Take parameters

• Call other procedures

• Return a status value to a calling procedure or batch to indicate
success or failure and the reason for failure

• Return values of parameters to a calling procedure or batch

• Be executed on remote Adaptive Servers

The ability to write stored procedures greatly enhances the power,
efficiency, and flexibility of SQL. Compiled procedures dramatically
improve the performance of SQL statements and batches. In



14-2 Using Stored Procedures

How Stored Procedures Work Adaptive Server Enterprise Release 11.5.x

addition, stored procedures on other Adaptive Servers can be
executed if both your server and the remote server are set up to allow
remote logins. You can write triggers on your local Adaptive Server
that execute procedures on a remote server whenever certain events,
such as deletions, updates, or inserts, take place locally.

Stored procedures differ from ordinary SQL statements and from
batches of SQL statements in that they are precompiled. The first
time you run a procedure, Adaptive Server’s query processor
analyzes it and prepares an execution plan that is ultimately stored in
a system table. Subsequently, the procedure is executed according to
the stored plan. Since most of the query processing work has already
been performed, stored procedures execute almost instantly.

Adaptive Server supplies a variety of stored procedures as
convenient tools for the user. Those that are stored in the
sysprocedures table are called system procedures.

You create a stored procedure with the create procedure command. To
execute a stored procedure, either a system procedure or a user-
defined procedure, use the execute command. Or you can use the
name of the stored procedure alone, as long as it is the first word in a
statement or batch.

Examples of Creating and Using Stored Procedures

The syntax for creating a simple stored procedure, without special
features such as parameters, is:

create procedure procedure_name
as SQL_statements

Stored procedures are database objects, and their names must follow
the rules for identifiers.

Any number and kind of SQL statements can be included except for
create statements. See “Restrictions Associated with Stored
Procedures” on page 14-26. A procedure can be as simple as a single
statement that lists the names of all the users in a database:

create procedure namelist
as select name from sysusers

To execute a stored procedure, use the keyword execute and the name
of the stored procedure, or just use the procedure’s name, as long as
it is submitted to Adaptive Server by itself or is the first statement in
a batch. You can execute namelist in any of these ways:

namelist



Transact-SQL User’s Guide 14-3

Adaptive Server Enterprise Release 11.5.x How Stored Procedures Work

execute namelist

exec namelist

To execute a stored procedure on a remote Adaptive Server, you
must give the server name. The full syntax for a remote procedure
call is:

execute
server_name .[ database_name ].[ owner ]. procedure_name

The following examples execute the procedure namelist in the pubs2
database on the GATEWAY server:

execute gateway.pubs2..namelist

gateway.pubs2.dbo.namelist

exec gateway...namelist

The last example works only if pubs2 is your default database. For
information on setting up remote procedure calls on Adaptive
Server, see Chapter 7, “Managing Remote Servers,” in the Security
Administration Guide.

The database name is optional only if the stored procedure is located
in your default database. The owner name is optional only if the
Database Owner (“dbo”) owns the procedure or if you own it. Of
course, you must have permission to execute the procedure.

A procedure can include more than one statement.

create procedure showall as
select count(*) from sysusers
select count(*) from sysobjects
select count(*) from syscolumns

When the procedure is executed, the results of each command are
displayed in the order that the statement appears in the procedure.

showall



14-4 Using Stored Procedures

How Stored Procedures Work Adaptive Server Enterprise Release 11.5.x

------------
5

(1 row affected)

------------
          88

(1 row affected)

------------
         349

(1 row affected, return status = 0)

When a create procedure command is successfully executed, the
procedure’s name is stored in sysobjects, and its source text is stored
in syscomments.

You can display the source text of a procedure with the system
procedure sp_helptext:

sp_helptext showall

# Lines of Text
---------------
              1

(1 row affected)

text
----------------------------------------
create procedure showall as
select count(*) from sysusers
select count(*) from sysobjects
select count(*) from syscolumns

(1 row affected, return status = 0)

Stored Procedures and Permissions

Stored procedures can serve as security mechanisms, since a user can
be granted permission to execute a stored procedure, even if she or
he does not have permissions on the tables or views referenced in it
or permission to execute specific commands. For details, see the
Security Features User’s Guide.

You can protect the source text of a stored procedure against
unauthorized access by restricting select permission on the text



Transact-SQL User’s Guide 14-5

Adaptive Server Enterprise Release 11.5.x Creating and Executing Stored Procedures

column of the syscomments table to the creator of the procedure and
the System Administrator. This restriction is required to run
Adaptive Server in the evaluated configuration. To enact this
restriction, a System Security Officer must reset the allow select on
syscomments.text column parameter with the system procedure
sp_configure. For more information, see the System Administration
Guide.

Another way to protect access to the source text of a stored procedure
is to hide the source text using the system procedure sp_hidetext. For
information about hiding source text, see sp_hidetext in the Adaptive
Server Reference Manual.

Stored Procedures and Performance

As a database changes, you can re-optimize the original query plans
used to access its tables by recompiling them with the system
procedure sp_recompile. This saves you the work of having to find,
drop, and then re-create every stored procedure and trigger. This
example marks every stored procedure and trigger that accesses the
table titles to be recompiled the next time it is executed.

sp_recompile titles

For detailed information about sp_recompile, see the Adaptive Server
Reference Manual.

Creating and Executing Stored Procedures

The complete syntax for create procedure is:

create procedure [ owner .] procedure_name [; number ]
[[(]@ parameter_name
    datatype  [( length ) | ( precision  [, scale ])]
    [= default ][output]
[, @ parameter_name
    datatype  [( length ) | ( precision  [, scale ])]
    [=  default ][output]]...[)]]
[with recompile]
as { SQL_statements  | external name dll_name }

You can create a procedure in the current database only.

Permission to issue create procedure defaults to the Database Owner,
who can transfer it to other users.

Here is the complete syntax statement for execute:



14-6 Using Stored Procedures

Creating and Executing Stored Procedures Adaptive Server Enterprise Release 11.5.x

[exec[ute]] [@ return_status  = ]
[[[ server .] database .] owner .] procedure_name [; number ]
    [[@ parameter_name  =] value  |
        [@ parameter_name  =] @ variable  [output]
    [,[@ parameter_name  =] value  |
        [@ parameter_name  =] @ variable  [output]...]]
[with recompile]

➤ Note
When Component Integration Services is not enabled, remote procedure

calls (RPCs) are not treated as part of a transaction. If you execute an RPC

after begin transaction, and then execute rollback transaction, Adaptive Server

does not roll back any changes made by the RPC on remote data. The

stored procedure designer should be sure that all conditions that might

trigger a rollback are checked before issuing an RPC that will alter remote

data. If Component Integration Services is enabled, use the set transactional
rpc and cis rpc handling commands to use transactional RPCs. For more

information on the transactional rpc and cis rpc handling options, see the set
command in the Adaptive Server Reference Manual.

Parameters

A parameter is an argument to a stored procedure. One or more
parameters can optionally be declared in a create procedure statement.
The value of each parameter named in a create procedure statement
must be supplied by the user when the procedure is executed.

Parameter names must be preceded by an @ sign and must conform
to the rules for identifiers, as discussed under “Identifiers” on page
1-6. Parameter names are local to the procedure that creates them; the
same parameter names can be used in other procedures. Enclose any
parameter value that includes punctuation (such as an object name
qualified by a database name or owner name) in single or double
quotes. Parameter names, including the @ sign, can be a maximum of
30 bytes long.

Parameters must be given a system datatype (except text or image) or
a user-defined datatype, and (if required for the datatype) a length or
precision and scale in parentheses.

Here is a stored procedure for the pubs2 database. Given an author’s
last and first names, the procedure displays the names of any books
written by that person and the name of each book’s publisher.



Transact-SQL User’s Guide 14-7

Adaptive Server Enterprise Release 11.5.x Creating and Executing Stored Procedures

create proc au_info @lastname varchar(40),
  @firstname varchar(20) as
select au_lname, au_fname, title, pub_name
from authors, titles, publishers, titleauthor
where au_fname = @firstname
and au_lname = @lastname
and authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id
and titles.pub_id = publishers.pub_id

Now, execute au_info:

au_info Ringer, Anne

au_lname au_fname title                 pub_name
-------- -------- --------------------- ----------
Ringer   Anne     The Gourmet Microwave Binnet & Hardley
Ringer   Anne     Is Anger the Enemy?   New Age Books

(2 rows affected, return status = 0)

The following stored procedure queries the system tables. Given a
table name as the parameter, the procedure displays the table name,
index name, and index ID.

create proc showind @table varchar(30) as
select table_name = sysobjects.name,
index_name = sysindexes.name, index_id = indid
from sysindexes, sysobjects
where sysobjects.name = @table
and sysobjects.id = sysindexes.id

The column headings, for example, table_name, were added to
improve the readability of the results. Here are acceptable syntax
forms for executing this stored procedure:

execute showind titles

exec showind titles

execute showind @table = titles

execute GATEWAY.pubs2.dbo.showind titles

showind titles

The last syntax form, without exec or execute, is acceptable as long as
the statement is the only one or the first one in a batch.

Here are the results of executing showind in the pubs2 database when
titles is given as the parameter:



14-8 Using Stored Procedures

Creating and Executing Stored Procedures Adaptive Server Enterprise Release 11.5.x

table_name  index_name  index_id
----------  ----------  ----------
titles      titleidind      0
titles      titleind 2

(2 rows affected, return status = 0)

If you supply the parameters in the form “@parameter = value” you
can supply them in any order. Otherwise, you must supply
parameters in the order of their create procedure statement. If you
supply one value in the form “@parameter = value”, then supply all
subsequent parameters this way.

The following procedure shows the datatype of any column. Here,
the procedure displays the datatype of the qty column from the
salesdetail table.

create procedure showtype @tabname varchar(18),
@colname varchar(18) as

 select syscolumns.name, syscolumns.length,
 systypes.name
 from syscolumns, systypes, sysobjects
 where sysobjects.id = syscolumns.id

  and @tabname = sysobjects.name
  and @colname = syscolumns.name
  and syscolumns.type = systypes.type

When the procedure is executed, the @tabname and @colname values
can be given in a different order from the create procedure statement if
they are specified by name:

exec showtype
@colname = qty , @tabname = salesdetail

You can use case expressions in any stored procedure where you use
a value expression. The following example checks the sales for any
book in the titles table:

create proc booksales @titleid tid
as
select title, total_sales,
case
when total_sales != null then "Books sold"
when total_sales = null then "Book sales not available"
end
from titles
where @titleid = title_id

For example:

booksales MC2222



Transact-SQL User’s Guide 14-9

Adaptive Server Enterprise Release 11.5.x Creating and Executing Stored Procedures

title                                 total_sales
------------------------              -----------
Silicon Valley Gastronomic Treats    2032 Books sold

(1 row affected)

Default Parameters

You can assign a default value for the parameter in the create procedure
statement. This value, which can be any constant, is taken as the
argument to the procedure if the user does not supply one.

Here is a procedure that displays the names of all the authors who
have written a book published by the publisher given as a parameter.
If no publisher name is supplied, the procedure shows the authors
published by Algodata Infosystems.

create proc pub_info
  @pubname varchar(40) = "Algodata Infosystems" as
select au_lname, au_fname, pub_name
from authors a, publishers p, titles t,
titleauthor ta
where @pubname = p.pub_name
and a.au_id = ta.au_id
and t.title_id = ta.title_id
and t.pub_id = p.pub_id

Note that if the default value is a character string that contains
embedded blanks or punctuation, it must be enclosed in single or
double quotes.

When you execute pub_info, you can give any publisher’s name as
the parameter value. If you do not supply any parameter, Adaptive
Server uses the default, Algodata Infosystems.

exec pub_info



14-10 Using Stored Procedures

Creating and Executing Stored Procedures Adaptive Server Enterprise Release 11.5.x

au_lname        au_fname      pub_name
--------------  ------------  --------------------
Green           Marjorie      Algodata Infosystems
Bennet Abraham       Algodata Infosystems
O’Leary         Michael       Algodata Infosystems
MacFeather      Stearns       Algodata Infosystems
Straight        Dick          Algodata Infosystems
Carson Cheryl        Algodata Infosystems
Dull            Ann           Algodata Infosystems
Hunter          Sheryl        Algodata Infosystems
Locksley        Chastity      Algodata Infosystems

(9 rows affected, return status = 0)

You assign “titles” as the default value for the @table parameter in
this procedure, showind2:

create proc showind2
@table varchar(30) = titles as
select table_name = sysobjects.name,
    index_name = sysindexes.name, index_id = indid
from sysindexes, sysobjects
where sysobjects.name = @table
and sysobjects.id = sysindexes.id

The column headings, for example, table_name, clarify the results
display. Here is what the procedure shows for the authors table:

showind2 authors

table_name  index_name  index_id
----------- -------------   ---------
authors     auidind 1
authors     aunmind                 2

(2 rows affected, return status = 0)

If the user does not supply a value, Adaptive Server uses the default,
titles.

showind2

table_name  index_name  index_id
----------- ----------- ---------
titles      titleidind         1
titles      titleind 2

(2 rows affected, return status =0)

If a parameter is expected but none is supplied, and a default value
is not supplied in the create procedure statement, Adaptive Server



Transact-SQL User’s Guide 14-11

Adaptive Server Enterprise Release 11.5.x Creating and Executing Stored Procedures

displays an error message listing the parameters expected by the
procedure.

If a user executes a stored procedure and specifies more parameters
than the number of parameters expected by the procedure, Adaptive
Server ignores the extra parameters.

NULL As the Default Parameter

In the create procedure statement, you can declare NULL as the default
value for individual parameters:

create procedure procedure_name
@param datatype  [ = null ]
[, @ param datatype  [ = null ]]...

In this case, if the user does not supply a parameter, Adaptive Server
executes the stored procedure without displaying an error message.

The procedure definition can specify an action be taken if the user
does not give a parameter, by checking to see that the parameter’s
value is null. Here is an example:

create procedure showind3
@table varchar(30) = null as
if @table is null
    print "Please give a table name."
else
   select table_name = sysobjects.name,
     index_name = sysindexes.name,
     index_id = indid
   from sysindexes, sysobjects
   where sysobjects.name = @table
   and sysobjects.id = sysindexes.id

If the user fails to give a parameter, Adaptive Server prints the
message from the procedure on the screen.

For other examples of setting the default to NULL, examine the
source text of system procedures using sp_helptext.

Wildcard Characters in the Default Parameter

The default can include the wildcard characters (%, _, [] , and [^]) if
the procedure uses the parameter with the like keyword.

For example, showind can be modified to display information about
the system tables if the user does not supply a parameter, like this:



14-12 Using Stored Procedures

Creating and Executing Stored Procedures Adaptive Server Enterprise Release 11.5.x

create procedure showind4
@table varchar(30) = "sys%" as
select table_name = sysobjects.name,
    index_name = sysindexes.name,
    index_id = indid
from sysindexes, sysobjects
where sysobjects.name like @table
and sysobjects.id = sysindexes.id

Using More Than One Parameter

Here is a variant of the stored procedure au_info that has defaults
with wildcard characters for both parameters:

create proc au_info2
  @lastname varchar(30) = "D%",
  @firstname varchar(18) = "%" as
select au_lname, au_fname, title, pub_name
from authors, titles, publishers, titleauthor
where au_fname like @firstname
and au_lname like @lastname
and authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id
and titles.pub_id = publishers.pub_id

If au_info2 is executed with no parameters, all the authors with last
names beginning with “D” are displayed:

au_info2

au_lname au_fname title pub_name
-------- -------  ------------------------- -------------
Dull     Ann      Secrets of Silicon Valley  Algodata Infosystems
DeFrance Michel The Gourmet Microwave Binnet & Hardley

(2 rows affected)

If defaults are available for parameters, parameters can be omitted at
execution, beginning with the last parameter. You cannot skip a
parameter unless NULL is its supplied default.

➤ Note
If you supply parameters in the form @parameter = value, you can supply

parameters in any order. You can also omit a parameter for which a default

has been supplied. If you supply one value in the form @parameter = value,

then supply all subsequent parameters this way.



Transact-SQL User’s Guide 14-13

Adaptive Server Enterprise Release 11.5.x Creating and Executing Stored Procedures

As an example of omitting the second parameter when defaults for
two parameters have been defined, you can find the books and
publishers for all authors with the last name “Ringer” like this:

au_info2 Ringer

au_lname   au_fname    title Pub_name
--------   --------    --------------------- ------------
Ringer     Anne        The Gourmet Microwave Binnet & Hardley
Ringer  Anne Is Anger the Enemy? New Age Books
Ringer Albert Is Anger the Enemy? New Age Books
Ringer Albert Life Without Fear New Age Books

(4 rows affected)

If a user executes a stored procedure and specifies more parameters
than the number of parameters expected by the procedure, Adaptive
Server ignores the extra parameters.

Remember that SQL is a free-form language. There are no rules about
the number of words you can put on a line or where you must break
a line. If you issue a stored procedure followed by a command,
Adaptive Server will attempt to execute the procedure and then the
command. For example, if you issue the following commands:

sp_help checkpoint

Adaptive Server returns the output from sp_help and runs the
checkpoint command. Using delimited identifiers for procedure
parameters can produce unintended results.

Procedure Groups

The optional semicolon and integer number after the name of the
procedure in the create procedure and execute statements allow you to
group procedures of the same name so that they can be dropped
together with a single drop procedure statement.

Procedures used in the same application are often grouped this way.
For example, you might create a series of procedures called orders;1,
orders;2, and so on. The following statement would drop the entire
group:

drop proc orders

Once procedures have been grouped by appending a semicolon and
number to their names, they cannot be dropped individually. For
example, the following statement is not allowed:

drop proc orders;2



14-14 Using Stored Procedures

Creating and Executing Stored Procedures Adaptive Server Enterprise Release 11.5.x

To run Adaptive Server in the evaluated configuration, you must
prohibit grouping of procedures. This prohibition ensures that every
stored procedure has a unique object identifier and can be dropped
individually. To disallow procedure grouping, a System Security
Officer must reset the allow procedure grouping configuration parameter.
For information, see the System Administration Guide.

Using with recompile in create procedure

In the create procedure statement, the optional clause with recompile
comes just before the SQL statements. It instructs Adaptive Server
not to save a plan for this procedure. A new plan is created each time
the procedure is executed.

In the absence of with recompile, Adaptive Server stores the execution
plan that it created. Usually, this execution plan is satisfactory.

However, a change in the data or parameter values supplied for
subsequent executions may cause Adaptive Server to create an
execution plan that is different from the one it created when the
procedure was first executed. In such situations, Adaptive Server
needs a new execution plan.

Use with recompile in a create procedure statement when you think you
need a new plan. See the Adaptive Server Reference Manual for more
information.

Using with recompile in execute

In the execute statement, the optional clause with recompile comes after
any parameters. It instructs Adaptive Server to compile a new plan,
which is used for subsequent executions.

Use with recompile when you execute a procedure if your data has
changed a great deal, or if the parameter you are supplying is
atypical—that is, if you have reason to believe that the plan stored
with the procedure might not be optimal for this execution of it.

➤ Note
If you use select * in your create procedure statement, the procedure, even if

you use the with recompile option to execute, does not pick up any new

columns added to the table. You must drop the procedure and recreate it.



Transact-SQL User’s Guide 14-15

Adaptive Server Enterprise Release 11.5.x Creating and Executing Stored Procedures

Nesting Procedures Within Procedures

Nesting occurs when one stored procedure or trigger calls another.
The nesting level is incremented when the called procedure or
trigger begins execution and it is decremented when the called
procedure or trigger completes execution. Exceeding the maximum
of 16 levels of nesting causes the procedure to fail. The current
nesting level is stored in the @@nestlevel global variable.

You can call another procedure by name or by a variable name in
place of the actual procedure name. For example:

create procedure test1 (@var char(10)
    as exec @au_info2

Using Temporary Tables in Stored Procedures

You can create and use temporary tables in a stored procedure, but
the temporary table exists only for the duration of the stored
procedure that creates it. When the procedure completes, Adaptive
Server automatically drops the temporary table. A single procedure
can:

• Create a temporary table

• Insert, update, or delete data

• Run queries on the temporary table

• Call other procedures that reference the temporary table

Since the temporary table must exist in order to create procedures
that reference it, here are the steps to follow:

1. Create the temporary table you need with a create table statement
or a select into statement. For example:

create table #tempstores
    (stor_id char(4), amount money)

2. Create the procedures that access the temporary table (but not
the one that creates it).

create procedure inv_amounts as
    select stor_id, "Total Due" = sum(amount)
    from #tempstores
    group by stor_id

3. Drop the temporary table:

drop table #tempstores



14-16 Using Stored Procedures

Creating and Executing Stored Procedures Adaptive Server Enterprise Release 11.5.x

4. Create the procedure that creates the table and calls the
procedures created in step 2:

create procedure inv_proc as
create table #tempstores
(stor_id char(4), amount money)

When you run the inv_proc procedure, it creates the table, but it
only exists during the procedure’s execution. Try inserting
values into the #tempstores table or running the inv_amounts
procedure:

insert #tempstores
select stor_id, sum(qty*(100-discount)/100*price)
from salesdetail, titles
where salesdetail.title_id = titles.title_id
group by stor_id, salesdetail.title_id

exec inv_amounts

You cannot, because the #tempstores table no longer exists.

You can also create temporary tables without the # prefix, using create
table tempdb..tablename... from inside a stored procedure. These tables
do not disappear when the procedure completes, so they can be
referenced by independent procedures. Follow the above steps to
create these tables.

Setting Options in Stored Procedures

You can use some of the set command options the inside a stored
procedure. The set option remains in effect during the execution of
the procedure and most options revert to the former setting at the
close of the procedure. Only the dateformat, datefirst, and language
options do not revert to their former settings.

However, if you use a set option (such as identity_insert) that requires
the user to be the object owner, a user who is not the object owner
cannot execute the stored procedure.

After Creating a Stored Procedure

After you create a stored procedure, the source text describing the
procedure is stored in the text column of the syscomments system
table. In previous releases of SQL Server, users often deleted the
source text from syscomments, in order to save disk space and remove
confidential information from this public area. Do not remove this
information from syscomments; doing so can cause problems for



Transact-SQL User’s Guide 14-17

Adaptive Server Enterprise Release 11.5.x Creating and Executing Stored Procedures

future upgrades of Adaptive Server. Instead, encrypt the text in
syscomments by using the sp_hidetext system procedure, described in
the Adaptive Server Reference Manual. For more information, see
“Compiled Objects” on page 1-3.

Executing Stored Procedures

You can execute stored procedures after a time delay or remotely.

Executing Procedures After a Time Delay

The waitfor command delays execution of a stored procedure at a
specified time or until a specified amount of time has passed.

For example, to execute the procedure testproc in half an hour:

begin
    waitfor delay "0:30:00"
    exec testproc
end

After issuing the waitfor command, you cannot use that connection to
Adaptive Server until the specified time or event occurs.

Executing Procedures Remotely

You can execute procedures on a remote Adaptive Server from your
local Adaptive Server. Once both servers are properly configured,
you can execute any procedure on the remote Adaptive Server
simply by using the server name as part of the identifier. For
example, to execute a procedure named remoteproc on a server named
GATEWAY:

exec gateway.remotedb.dbo.remoteproc

See the System Administration Guide for information on how to
configure your local and remote Adaptive Servers for remote
execution of procedures. You can pass one or more values as
parameters to a remote procedure from the batch or procedure that
contains the execute statement for the remote procedure. Results from
the remote Adaptive Server appear on your local terminal.

The return status from procedures can be used to capture and
transmit information messages about the execution status of your
procedures. For more information, see “Return Status” on page
14-18.



14-18 Using Stored Procedures

Returning Information from Stored Procedures Adaptive Server Enterprise Release 11.5.x

◆ WARNING!
If Component Integration Services is not enabled, Adaptive Server
does not treat remote procedure calls (RPCs) as part of a transaction.
Therefore, if you execute an RPC as part of a transaction, and then roll
back the transaction, Adaptive Server does not roll back any changes
made by the RPC. When Component Integration Services is enabled,
use set transactional rpc and set cis rpc handling to use transactional RPCs.
For more information on the transactional rpc and cis rpc handling options,
see the set command in the Adaptive Server Reference Manual .

Returning Information from Stored Procedures

Stored procedures can return the following types of information:

• Return status – indicates whether or not the stored procedure
completed successfully.

• proc role function – checks whether the procedure was executed by
a user with sa_role, sso_role, or ss_oper privileges.

• Return parameters – report the parameter values back to the
caller, who can then use conditional statements to check the
returned value.

Return status and return parameters allow you to modularize your
stored procedures. A set of SQL statements that are used by several
stored procedures can be created as a single procedure that returns
its execution status or the values of its parameters to the calling
procedure. For example, many Adaptive Server system procedures
execute a procedure that verifies that certain parameters are valid
identifiers.

Remote procedure calls, which are stored procedures that run on a
remote Adaptive Server, also return both kinds of information. All
the examples below could be executed remotely if the syntax of the
execute statement included the server, database, and owner names,
as well as the procedure name.

Return Status

Stored procedures report a return status that indicates whether or
not they completed successfully, and if they did not, the reasons for
failure. This value can be stored in a variable when a procedure is



Transact-SQL User’s Guide 14-19

Adaptive Server Enterprise Release 11.5.x Returning Information from Stored Procedures

called, and used in future Transact-SQL statements. Adaptive
Server-defined return status values for failure range from -1 through
-99; users can define their own return status values outside this
range.

Here is an example of a batch that uses the form of the execute
statement that returns the status:

declare @status int
execute @status = byroyalty 50
select @status

The execution status of the byroyalty procedure is stored in the
variable @status. “50” is the supplied parameter, based on the
royaltyper column of the titleauthor table. This example prints the
value with a select statement; later examples use this return value in
conditional clauses.

Reserved Return Status Values

Adaptive Server reserves 0, to indicate a successful return, and
negative values from -1 through -99, to indicate the reasons for
failure. Numbers 0 and -1 through -14 are currently used in release
11.5, as shown in Table 14-1:

Values -15 through -99 are reserved for future use by Adaptive
Server.

Table 14-1: Reserved return status values

Value Meaning
0 Procedure executed without error

-1 Missing object
-2 Datatype error
-3 Process was chosen as deadlock victim
-4 Permission error
-5 Syntax error
-6 Miscellaneous user error
-7 Resource error, such as out of space
-8 Non-fatal internal problem
-9 System limit was reached

-10 Fatal internal inconsistency
-11 Fatal internal inconsistency
-12 Table or index is corrupt
-13 Database is corrupt
-14 Hardware error



14-20 Using Stored Procedures

Returning Information from Stored Procedures Adaptive Server Enterprise Release 11.5.x

If more than one error occurs during execution, the status with the
highest absolute value is returned.

User-Generated Return Values

You can generate your own return values in stored procedures by
adding a parameter to the return statement. Numbers 0 through -99
are reserved for use by Adaptive Server; all other integers can be
used. The following example returns 1 when a book has a valid
contract and returns 2 in all other cases:

create proc checkcontract @titleid tid
as
if (select contract from titles where
        title_id = @titleid) = 1
   return 1
else
   return 2

For example:

checkcontract MC2222

(return status = 1)

The following stored procedure calls checkcontract, and uses
conditional clauses to check the return status:

create proc get_au_stat @titleid tid
as
declare @retvalue int
execute @retvalue = checkcontract @titleid
if (@retvalue = 1)
   print "Contract is valid."
else
    print "There is not a valid contract."

Here are the results when you execute get_au_stat with the title_id of
a book with a valid contract:

get_au_stat MC2222

Contract is valid

Checking Roles in Procedures

If a stored procedure performs system administration or security-
related tasks, you may want to ensure that only users who have been
granted a specific role can execute it. (See the Security Features User’s
Guide for information about roles.) The proc_role function allows you



Transact-SQL User’s Guide 14-21

Adaptive Server Enterprise Release 11.5.x Returning Information from Stored Procedures

to check roles when the procedure is executed. It returns 1 if the user
possesses the specified role. The role names are sa_role, sso_role, and
oper_role.

Here is an example using proc_role in the stored procedure test_proc to
require the invoker to be a System Administrator:

create proc test_proc
as
if (proc_role("sa_role") = 0)
begin
    print "You do not have the right role."
    return -1
end
else
    print "You have SA role."
    return 0

For example:

test_proc

You have SA role.

Return Parameters

Another way that stored procedures can return information to the
caller is through return parameters. The caller can then use
conditional statements to check the returned value.

When both a create procedure statement and an execute statement
include the output option with a parameter name, the procedure
returns a value to the caller. The caller can be a SQL batch or another
stored procedure. The value returned can be used in additional
statements in the batch or calling procedure. When return
parameters are used in an execute statement that is part of a batch, the
return values are printed with a heading before subsequent
statements in the batch are executed.

This stored procedure performs multiplication on two integers (the
third integer, @result, is defined as an output parameter):

create procedure mathtutor
@mult1 int, @mult2 int, @result int output
as
select @result = @mult1 * @mult2

To use mathtutor to figure a multiplication problem, you must declare
the @result variable and include it in the execute statement. Adding



14-22 Using Stored Procedures

Returning Information from Stored Procedures Adaptive Server Enterprise Release 11.5.x

the output keyword to the execute statement displays the value of the
return parameters.

declare @result int
exec mathtutor 5, 6, @result output

(return status = 0)

Return parameters:

-----------
         30

If you wanted to guess at the answer and execute this procedure by
providing three integers, you would not see the results of the
multiplication. The select statement in the procedure assigns values,
but does not print:

mathtutor 5, 6, 32

(return status = 0)

The value for the output parameter must be passed as a variable, not
as a constant. This example declares the @guess variable to store the
value to pass to mathtutor for use in @result. Adaptive Server prints the
return parameters:

declare @guess int
select @guess = 32
exec mathtutor 5, 6,
@result = @guess output

(1 row affected)
(return status = 0)

Return parameters:

@result
-----------
        30

The value of the return parameter is always reported, whether or not
its value has changed. Note that:

• In the example above, the output parameter @result must be
passed as “@parameter = @variable”. If it were not the last
parameter passed, subsequent parameters would have to be
passed as “@parameter = value”.

• @result does not have to be declared in the calling batch; it is the
name of a parameter to be passed to mathtutor.



Transact-SQL User’s Guide 14-23

Adaptive Server Enterprise Release 11.5.x Returning Information from Stored Procedures

• Although the changed value of @result is returned to the caller in
the variable assigned in the execute statement, in this case @guess,
it is displayed under its own heading, @result.

If you want to use the initial value of @guess in conditional clauses
after the execute statement, you must store it in another variable name
during the procedure call. The following example illustrates the last
two bulleted items, above, by using @store to hold the value of the
variable during the execution of the stored procedure, and by using
the “new” returned value of @guess in conditional clauses:

declare @guess int
declare @store int
select @guess = 32
select @store = @guess
execute mathtutor 5, 6,
@result = @guess output
select Your_answer = @store,
Right_answer = @guess
if @guess = @store
    print "Bingo!"
else
    print "Wrong, wrong, wrong!"

(1 row affected)
(1 row affected)
(return status = 0)

@result
-----------
         30

 Your_answer Right_answer
 ----------- ------------
          32           30

Wrong, wrong, wrong!

This stored procedure checks to determine whether new book sales
would cause an author’s royalty percentage to change (the @pc
parameter is defined as an output parameter):



14-24 Using Stored Procedures

Returning Information from Stored Procedures Adaptive Server Enterprise Release 11.5.x

create proc roy_check @title tid, @newsales int,
        @pc int output
as
declare @newtotal int
select @newtotal = (select titles.total_sales +
@newsales
from titles where title_id = @title)
select @pc = royalty from  roysched
   where @newtotal  >= roysched.lorange and
          @newtotal < roysched.hirange
   and roysched.title_id = @title

The following SQL batch calls the roy_check procedure, after
assigning a value to the percent variable. The return parameters are
printed before the next statement in the batch is executed:

declare @percent int
select @percent = 10
execute roy_check "BU1032", 1050, @pc = @percent
output
select Percent = @percent
go

(1 row affected)
(return status = 0)

@pc
-----------
         12
Percent
-----------
         12

(1 row affected)

The following stored procedure calls the roy_check procedure and
uses the return value for percent in a conditional clause:

create proc newsales @title tid, @newsales int
as
declare @percent int
declare @stor_pc int
select @percent = (select royalty from roysched,
titles
        where roysched.title_id = @title
        and total_sales >= roysched.lorange
        and total_sales < roysched.hirange
        and roysched.title_id = titles.title_id)
select @stor_pc = @percent



Transact-SQL User’s Guide 14-25

Adaptive Server Enterprise Release 11.5.x Returning Information from Stored Procedures

execute roy_check @title, @newsales, @pc = @percent
  output
if
  @stor_pc != @percent
begin
  print "Royalty is changed."
  select Percent = @percent
end
else
  print "Royalty is the same."

If you execute this stored procedure with the same parameters used
in the earlier batch, you see these results:

execute newsales "BU1032", 1050

Royalty is changed
Percent
-----------
         12

(1 row affected, return status = 0)

In the two preceding examples that call roy_check, @pc is the name of
the parameter that is passed to roy_check, and @percent is the variable
containing the output. When the newsales stored procedure executes
roy_check, the value returned in @percent may change, depending on
the other parameters that are passed. If you want to compare the
returned value of percent with the initial value of @pc, you must store
the initial value in another variable. The preceding example saved
the value in stor_pc.

Passing Values in Parameters

Use the following format to pass values in the parameters:

@parameter  = @ variable

You cannot pass constants; there must be a variable name to
“receive” the return value. The parameters can be of any Adaptive
Server datatype except text or image.

➤ Note
If the stored procedure requires several parameters, either pass the return

value parameter last in the execute statement or pass all subsequent

parameters in the form @parameter = value.



14-26 Using Stored Procedures

Restrictions Associated with Stored Procedures Adaptive Server Enterprise Release 11.5.x

The output Keyword

The output keyword can be abbreviated to out, just as execute can be
shortened to exec.

A stored procedure can return several values; each must be defined
as an output variable in the stored procedure and in the calling
statements:

exec myproc @a = @myvara out, @b = @myvarb out

If you specify output while you are executing a procedure, and the
parameter is not defined using output in the stored procedure, you
will get an error message. It is not an error to call a procedure that
includes return value specifications without requesting the return
values with output. However, you will not get the return values. The
stored procedure writer has control over what information users can
access, and users have control over their variables.

Restrictions Associated with Stored Procedures

Some additional restrictions on creating stored procedures are as
follows:

• You cannot combine create procedure statements with other
statements in the same batch.

• The create procedure definition itself can include any number and
kind of SQL statements, except for use and these create statements:

- create view

- create default

- create rule

- create trigger

- create procedure

• Other database objects can be created within a procedure. You
can reference an object you created in the same procedure, as long
as you create it before you reference it. The create statement for the
object must come first in the actual order of the statements within
the procedure.

• Within a stored procedure, you cannot create an object, drop it,
and then create a new object with the same name.

• Adaptive Server creates the objects defined in a stored procedure
when the procedure is executed, not when it is compiled.



Transact-SQL User’s Guide 14-27

Adaptive Server Enterprise Release 11.5.x Renaming Stored Procedures

• If you execute a procedure that calls another procedure, the called
procedure can access objects created by the first procedure.

• You can reference temporary tables within a procedure.

• If you create a temporary table with the #prefix inside a
procedure, the temporary table exists only for purposes of the
procedure—it disappears when you exit the procedure.
Temporary tables created using create table tempdb..tablename do not
disappear unless you explicitly drop them.

• The maximum number of parameters in a stored procedure is
255.

• The maximum number of local and global variables in a
procedure is limited only by available memory.

Qualifying Names Inside Procedures

Inside a stored procedure, object names used with create table and dbcc
must be qualified with the object owner’s name, if other users are to
use the stored procedure. Object names used with other statements,
like select and insert, inside a stored procedure need not be qualified
because the names are resolved when the procedure is compiled.

For example, user “mary”, who owns table marytab, should qualify
the name of her table when it is used with select or insert if she wants
other users to execute the procedure in which the table is used. The
reason for this rule is that object names are resolved when the
procedure is run. If marytab is not qualified, and user “john” tries to
execute the procedure, Adaptive Server looks for a table called
marytab owned by John.

Renaming Stored Procedures

Use the system procedure sp_rename to rename stored procedures.
Its syntax is:

sp_rename objname , newname

For example, to rename showall to countall:

sp_rename showall, countall

Of course, the new name must follow the rules for identifiers. You
can change the name only of stored procedures that you own. The
Database Owner can change the name of any user’s stored
procedure. The stored procedure must be in the current database.



14-28 Using Stored Procedures

Using Stored Procedures As Security Mechanisms Adaptive Server Enterprise Release 11.5.x

Renaming Objects Referenced by Procedures

You must drop and re-create a procedure if you rename any of the
objects it references. A stored procedure that references a table or
view whose name has been changed may seem to work fine for a
while. In fact, it works only until Adaptive Server recompiles it.
Recompilation takes place for many reasons and without notification
to the user.

Use sp_depends to get a report of the objects referenced by a
procedure.

Using Stored Procedures As Security Mechanisms

You can use stored procedures as security mechanisms to control
access to information in tables and to control the ability to perform
data modification. For example, you can deny other users
permission to use the select command on a table that you own and
create a stored procedure that allows them to see only certain rows or
certain columns. You can also use stored procedures to limit update,
delete, or insert statements.

The person who owns the stored procedure must own the table or
view used in the procedure. Not even a System Administrator can
create a stored procedure to perform operations on another user’s
tables, if the System Administrator has not been granted permissions
on those tables.

For information about granting and revoking permissions of stored
procedures and other database objects, see the Security Features User’s
Guide.

Dropping Stored Procedures

Use the drop procedure command to remove stored procedures. Its
syntax is:

drop proc[edure] [ owner .] procedure_name
[, [ owner .] procedure_name ] ...

If a stored procedure that was dropped is called by another stored
procedure, Adaptive Server displays an error message. However, if a
new procedure of the same name is defined to replace the one that
was dropped, other procedures that reference the original procedure
can call it successfully.



Transact-SQL User’s Guide 14-29

Adaptive Server Enterprise Release 11.5.x System Procedures

A procedure group, that is, more than one procedure with the same
name but with different numbered suffixes, can be dropped with a
single drop procedure statement. Once procedures have been grouped,
procedures within the group cannot be dropped individually.

System Procedures

System procedures are:

• Shortcuts for retrieving information from the system tables

• Mechanisms for accomplishing database administration and
other tasks that involve updating system tables

Most of the time, system tables are updated only through stored
procedures. A System Administrator can allow direct updates of
system tables by changing a configuration variable and issuing the
reconfigure with override command. See the System Administration Guide
for details.

The names of system procedures begin with “sp_”. They are created
by the installmaster script in the sybsystemprocs database during
Adaptive Server installation.

You can run system procedures from any database. If a system
procedure is executed from a database other than the sybsystemprocs
database, any references to system tables are mapped to the database
from which the procedure is being run. For example, if the Database
Owner of pubs2 runs sp_adduser from pubs2, the new user is added to
pubs2..sysusers.

When the parameter for a system procedure is an object name, and
the object name is qualified by a database name or owner name, the
entire name must be enclosed in single or double quotes.

Since system procedures are located in the sybsystemprocs database,
their permissions are also set there. Some of the system procedures
can be run only by Database Owners. These procedures ensure that
the user executing the procedure is the owner of the database on
which they are executed.

Other system procedures can be executed by any user who has been
granted execute permission on them, but this permission must be
granted in the sybsystemprocs database. This situation has two
consequences:

• A user can have permission to execute a system procedure either
in all databases or in none of them.



14-30 Using Stored Procedures

System Procedures Adaptive Server Enterprise Release 11.5.x

• The owner of a user database cannot directly control permissions
on the system procedures within his or her own database.

System Procedures Used for Security Administration

These system procedures are used for:

• Adding, dropping, and reporting on logins on Adaptive Server

• Adding, dropping, and reporting on users, groups, and aliases in
a database

• Changing passwords and default databases

• Changing the owner of a database

• Adding, dropping, and reporting on remote servers that can
access the current Adaptive Server

• Adding the names of users from remote servers who can access
the current Adaptive Server

The procedures in this category are:

System Procedures Used for Remote Servers

These system procedures are used for:

• Adding, dropping and reporting on remote servers that can
access the current Adaptive Server

• Adding the names of users from remote servers who can access
the current Adaptive Server

The procedures in this category are:

sp_addalias sp_changedbowner sp_droplogin sp_helpuser
sp_addgroup sp_changegroup sp_dropuser sp_password
sp_addlogin sp_dropalias sp_helpgroup
sp_adduser sp_dropgroup sp_helprotect

sp_addremotelogin sp_dropserver sp_remoteoption
sp_addserver sp_helpremotelogin sp_serveroption
sp_dropremotelogin sp_helpserver



Transact-SQL User’s Guide 14-31

Adaptive Server Enterprise Release 11.5.x System Procedures

System Procedures Used for Data Definition and Database Objects

These system procedures are used for:

• Binding and unbinding rules and defaults

• Adding, dropping, and reporting on primary keys, foreign keys,
and common keys

• Adding, dropping, and reporting on user-defined datatypes

• Renaming database objects and user-defined datatypes

• Re-optimizing stored procedures and triggers

• Reporting on database objects, user-defined datatypes,
dependencies among database objects, databases, indexes, and
space used by tables and indexes

The procedures in this category are:

System Procedures Used for User-Defined Messages

These system procedures are used for:

• Adding user-defined messages to the sysusermessages table in a
user database

• Dropping user-defined messages from sysusermessages

• Retrieving messages from either sysusermessages or sysmessages in
the master database for use in print and raiserror statements

The procedures in this category are:

System Procedures Used for System Administration

These system procedures are used for:

• Adding, dropping, and reporting on database and dump devices

sp_addtype sp_foreignkey sp_indsuspect
sp_bindefault sp_help sp_primarykey
sp_bindrule sp_helpdb sp_recompile
sp_commonkey sp_helpindex sp_rename
sp_depends sp_helpjoins sp_spaceused
sp_dropkey sp_helpkey sp_unbindefault
sp_droptype sp_helptext sp_unbindrule

sp_addmessage sp_dropmessage sp_getmessage



14-32 Using Stored Procedures

Getting Information About Stored Procedures Adaptive Server Enterprise Release 11.5.x

• Reporting on locks, the database options that are set, and the
users currently running processes

• Changing and reporting on configuration variables

• Monitoring Adaptive Server activity

The procedures in this category are:

See the System Administration Guide for more information about the
system procedures that accomplish these administrative tasks. For
complete information about the system procedures, see Chapter 3,
“System Procedures,” in the Adaptive Server Reference Manual.

Getting Information About Stored Procedures

Several system procedures provide information from the system
tables about stored procedures.

System procedures are briefly discussed in “System Procedures” on
page 14-29. For complete information about system procedures, see
Chapter 3, “System Procedures,” in the Adaptive Server Reference
Manual.

Getting a Report with sp_help

You can get a report on a stored procedure with the system
procedure sp_help. For example, you can get information on the
stored procedure byroyalty, which is part of the pubs2 database, like
this:

sp_help byroyalty

Name       Owner   type
--------   ------  ----------------
byroyalty  dbo     stored procedure

sp_addumpdevice sp_dropdevice sp_monitor
sp_configure sp_helpdevice sp_lock
sp_dboption sp_helpsort sp_who
sp_diskdefault sp_logdevice



Transact-SQL User’s Guide 14-33

Adaptive Server Enterprise Release 11.5.x Getting Information About Stored Procedures

Data_located_on_segment         When_created
---------------------------     --------------------
not applicable                  Jul 10, 1997 4:57PM

Parameter_name Type    Length Prec  Scale Param_order
-------------- ------  ------   ----  -----  -----------
@percentage    int          4 NULL   NULL            1

(return status = 0)

You can get help on a system procedure by executing sp_help when
using the sybsystemprocs database.

Viewing the Source Text of a Procedure with sp_helptext

To display the source text of the create procedure statement, execute the
system procedure sp_helptext:

sp_helptext byroyalty

# Lines of Text
---------------

1

(1 row affected)

text
---------------------------------------------------
create procedure byroyalty @percentage int
as
select au_id from titleauthor
where titleauthor.royaltyper = @percentage

(1 row affected, return status = 0)

You can view the source text of a system procedure by executing
sp_helptext when using the sybsystemprocs database.

If the source text of a stored procedure was encrypted using the
system procedure sp_hidetext, Adaptive Server displays a message
advising you that the text is hidden. For information about hiding
source text, see sp_hidetext in the Adaptive Server Reference Manual.

Identifying Dependent Objects with sp_depends

The system procedure sp_depends lists all the stored procedures that
reference the object you specify or all the procedures that it is
dependent upon.



14-34 Using Stored Procedures

Getting Information About Stored Procedures Adaptive Server Enterprise Release 11.5.x

For example, this command lists all the objects referenced by the
user-created stored procedure byroyalty:

sp_depends byroyalty

Things the object references in the current
database.
object           type       updated      selected
---------------- ----------- ---------   --------
dbo.titleauthor  user table  no          no

(return status = 0)

The following statement uses sp_depends to list all the objects that
reference the table titleauthor:

sp_depends titleauthor

Things inside the current database that reference
the object.

object          type
--------------  ------------------
dbo.byroyalty   stored procedure
dbo.titleview   view

(return status = 0)

You must drop and re-create the procedure if any of its referenced
objects have been renamed.

Identifying Permissions with sp_helprotect

The system procedure sp_helprotect reports permissions on a stored
procedure (or any other database object). For example:

sp_helprotect byroyalty

grantor    grantee    type  action    object    column  grantable
---------  ---------  ----  --------- -------   -----   ---------
dbo        public     Grant Execute   byroyalty All     FALSE

(return status = 0)



Transact-SQL User’s Guide 15-1

15 Using Extended Stored Procedures15.

Extended stored procedures (ESPs) provide a mechanism for calling
external procedural language functions from within Adaptive
Server. Users invoke ESPs using the same syntax as they use for
stored procedures. The difference is that an ESP executes procedural
language code rather than Transact-SQL statements.

This chapter discusses:

• Why Use Extended Stored Procedures?   15-1

• Creating Functions for ESPs   15-7

• Creating and Removing ESPs   15-18

• Executing ESPs   15-21

• System ESPs   15-22

• Getting Information About ESPs   15-23

• ESP Exceptions and Messages   15-23

Why Use Extended Stored Procedures?

Extended stored procedures provide a way of dynamically loading
and executing external procedural language functions from within
Adaptive Server. Each ESP is associated with a corresponding
function, which is executed when the ESP is invoked from Adaptive
Server.

An ESP allows Adaptive Server to perform a task outside Adaptive
Server in response to an event occurring within Adaptive Server. For
example, you could create an ESP function to sell a security (a task
performed outside Adaptive Server). This function is invoked in
response to a trigger that is fired when the price of the security
reaches a certain value. Or you could create an ESP function that
sends an email notification or a network-wide broadcast in response
to an event occurring within the relational database system.

For the purposes of ESPs, “a procedural language” is a programming
language that is capable of calling a C language function and
manipulating C language datatypes.

After a function has been registered in a database as an ESP, it can be
invoked just like a stored procedure from isql, from a trigger, from
another stored procedure, or from a client application.



15-2 Using Extended Stored Procedures

Why Use Extended Stored Procedures? Adaptive Server Enterprise Release 11.5.x

ESPs can:

• Take input parameters

• Return a status value indicating success or failure and the reason
for the failure

• Return values of output parameters

• Return result sets

Adaptive Server supplies some system ESPs as a convenience to
users. For example, one system ESP, xp_cmdshell, executes an
operating system command from within Adaptive Server.
Customers can also write their own ESPs using a subset of the Open
Server application programming interface (API).

ESP Overview

This section introduces you to ESPs. It covers:

• XP Server

• Dynamic Link Library Support

• Open Server API

• Example of Creating and Using ESPs

• ESPs and Permissions

• ESPs and Performance

Subsequent sections go into more detail about how to create and use
ESPs.

XP Server

Extended stored procedures are implemented by an Open Server
application called XP Server, which runs on the same machine as
Adaptive Server. Adaptive Server and XP Server communicate
through remote procedure calls (RPCs). Running ESPs in a separate
process protects Adaptive Server from a failure resulting from faulty
ESP code. The advantage of using ESPs instead of RPCs is that the
ESP runs in Adaptive Server the same way a stored procedure runs;
you do not need to have Open Server just to run the ESP itself.

XP Server is automatically installed when Adaptive Server is
installed.



Transact-SQL User’s Guide 15-3

Adaptive Server Enterprise Release 11.5.x Why Use Extended Stored Procedures?

XP Server must be running for Adaptive Server to execute an ESP.
Adaptive Server starts XP Server the first time an ESP is invoked and
shuts down XP Server when Adaptive Server itself exits.

On Windows NT, if the start mail session configuration parameter is set
to 1, XP Server automatically starts when Adaptive Server starts.

Dynamic Link Library Support

The procedural functions that contain the ESP code are compiled and
linked into dynamic link libraries (DLLs), which are loaded into XP
Server memory in response to an ESP execution request. The library
remains loaded unless one of the following occurs:

• XP Server exits

• The sp_freedll system procedure is invoked

• The esp unload dll configuration parameter is set using sp_configure

Open Server API

Adaptive Server uses the Open Server API, which allows users to
run the system ESPs provided with Adaptive Server. Users can also
implement their own ESPs using the Open Server API.

Table 15-1 lists the Open Server routines required for ESP
development. For complete documentation of these routines, see the
Open Server Server-Library/C Reference Manual.

Table 15-1: Open Server routines for ESP support

Function Purpose

srv_bind Describes and binds a program variable to a
parameter.

srv_descfmt Describes a parameter.

srv_numparams Returns the number of parameters in the ESP client
request.

srv_senddone Sends results completion message.

srv_sendinfo Sends messages.

srv_sendstatus Sends status value.

srv_xferdata Sends and receives parameters or data.

srv_yield Suspends execution of the current thread and allows
another thread to execute.



15-4 Using Extended Stored Procedures

Why Use Extended Stored Procedures? Adaptive Server Enterprise Release 11.5.x

Example of Creating and Using ESPs

After an ESP function has been written, compiled, and linked into a
DLL, you can create an ESP for the function using the as external name
clause of the create procedure command:

create procedure procedure_name  [ parameter_list ]
as external name dll_nam e

The procedure_name is the name of the ESP. The ESP name must be the
same as the name of its implementing function in the DLL. ESPs are
database objects, and their names must follow the rules for
identifiers.

The dll_name is the name of the DLL in which the implementing
function is stored.

The following statement creates an ESP named getmsgs, which is in
the msgs.dll. The getmsgs ESP takes no parameters. This example is for
a Windows NT Adaptive Server:

create procedure getmsgs
as external name "msgs.dll"

On a Solaris Adaptive Server, the statement would be:

create procedure getmsgs
as external name "msgs.so"

to reflect the Solaris naming conventions.

The next statement creates an ESP named getonemsg, which is also in
the msgs.dll. The getonemsg ESP takes a message number as a single
parameter.

create procedure getonemsg @msg int
as external name "msgs.dll"

The platform-specific naming conventions for the DLL extension are
summarized in Table 15-2.

Table 15-2: Naming conventions for DLL extensions

Platform DLL Extension

Digital UNIX .so

HP 9000/800 HP-UX .sl

Sun Solaris .so

Windows NT .dll



Transact-SQL User’s Guide 15-5

Adaptive Server Enterprise Release 11.5.x Why Use Extended Stored Procedures?

When Adaptive Server creates an ESP, it stores the procedure’s name
in the sysobjects system table, with an object type of “XP” and the
name of the DLL containing the ESP’s function in the text column of
the syscomments system table.

Execute an ESP as if it were a user-defined stored procedure or
system procedure. You can use the keyword execute and the name of
the stored procedure, or just give the procedure’s name, as long as it
is submitted to Adaptive Server by itself or is the first statement in a
batch. For example, you can execute getmsgs in any of these ways:

getmsgs

execute getmsgs

exec getmsgs

You can execute getonemsg in any of the following ways:

getonemsg 20

getonemsg @msg=20

execute getonemsg 20

execute getonemsg @msg=20

exec getonemsg 20

exec getonemsg @msg=20

After Creating an ESP

After you create an ESP, the source text describing the ESP is stored
in the text column of the syscomments system table. In previous
releases of SQL Server, users often deleted the source text from
syscomments, in order to save disk space and remove confidential
information from this public area. Do not remove this information
from syscomments; doing so can cause problems for future upgrades
of Adaptive Server. Instead, encrypt the text in syscomments by using
the sp_hidetext system procedure, described in the Adaptive Server
Reference Manual. For more information, see “Compiled Objects” on
page 1-3.

ESPs and Permissions

You can grant and revoke permissions on an ESP as you would on a
regular stored procedure.

In addition to the normal Adaptive Server security, you can use the
xp_cmdshell context configuration parameter to restrict execution



15-6 Using Extended Stored Procedures

Why Use Extended Stored Procedures? Adaptive Server Enterprise Release 11.5.x

permission of the xp_cmdshell system ESP to users who have system
administration privileges. Use this configuration parameter to
prevent ordinary users from using xp_cmdshell to execute operating
system commands that they would not have permission to execute
directly from the command line. The behavior of the xp_cmdshell
configuration parameter is platform-specific.

By default, a user must have the sa_role to execute xp_cmdshell.  To
grant permission to other users to use xp_cmdshell, use the grant
command. You can revoke the permission with revoke. The grant or
revoke permission is applicable irrespective of whether xp_cmdshell
context is set to 0 or 1.

ESPs and Performance

Since both Adaptive Server and XP Server reside on the same
machine, they can affect each other’s performance when XP Server is
executing a function that consumes significant resources.

You can use the sp_configure system procedure to set two
configuration parameters, esp execution priority and esp unload dll, to
control the impact of XP Server on Adaptive Server by setting
priorities for ESP execution and by freeing XP Server memory.

Setting Priority

Use the esp execution priority configuration parameter to set the priority
of the XP Server thread high, so that the Open Server scheduler runs
it before other threads on its run queue, or low, so that the scheduler
runs XP Server only when there are no other threads to run. The
default value of esp execution priority is 8, but you can set it anywhere
from 0 to 15. See the discussion of multithread programming in the
Open Server Server-Library/C Reference Manual for information about
scheduling Open Server threads.

Freeing Memory

You can minimize the amount of memory XP Server uses by
unloading a DLL from XP Server memory after the ESP request that
loaded it terminates. To do so, set the esp unload dll configuration
parameter beforehand so that the DLLs are automatically unloaded
after ESP execution finishes. As an alternative, if esp unload dll is not
set, you can free DLLs explicitly using the sp_freedll system
procedure.

You cannot unload DLLs that support system ESPs.



Transact-SQL User’s Guide 15-7

Adaptive Server Enterprise Release 11.5.x Creating Functions for ESPs

Creating Functions for ESPs

There are no restrictions on the contents of a function that
implements an ESP. The only requirement is that it be written in a
procedural programming language capable of:

• Calling a C language function

• Manipulating C language datatypes

• Linking with the Open Server API

By using the Open Client API, an ESP function can send requests to
Adaptive Server, either to the one from which it was originally
invoked or to another one.

An exception is that an ESP function should not call a C run-time
signal routine on Windows NT. This can cause XP Server to fail,
because Open Server does not support signal handling on Windows
NT.

Files for ESP Development

The header files needed for ESP development are in
$SYBASE/include. To include these files in your source files, include
the following in the source code:

• ospublic.h

• osperror.h

The Open Server library is in $SYBASE/lib.

The source for the sample program shown in “ESP Function
Example” on page 15-9 is in $SYBASE/samples/esp.

Open Server Data Structures

Three data structures are useful for writing ESP functions:

• SRV_PROC

• CS_SERVERMSG

• CS_DATAFMT

SRV_PROC

All ESP functions are coded to accept a single parameter, a pointer to
a SRV_PROC structure. The SRV_PROC structure passes



15-8 Using Extended Stored Procedures

Creating Functions for ESPs Adaptive Server Enterprise Release 11.5.x

information between the function and its calling process. ESP
developers cannot manipulate this structure directly.

The ESP function passes the SRV_PROC pointer to Open Server
routines that get parameter types and data and return output
parameters, status codes, and result sets.

CS_SERVERMSG

Open Server uses the CS_SERVERMSG structure to send error
messages to a client using the srv_sendinfo routine. See the Open
Server-Library/C Reference Manual for information about
CS_SERVERMSG.

CS_DATAFMT

Open Server uses the CS_DATAFMT structure to describe data
values and program variables.

Open Server Return Codes

Open Server functions return a code of type CS_RETCODE. The
most common CS_RETCODE values for ESP functions are:

• CS_SUCCEED

• CS_FAIL

Outline of a Simple ESP Function

An ESP function should have the following basic structure with
regard to its interaction with the Open Server API:

1. Get the number of parameters.

2. Get the values of the input/output parameters and bind them to
local variables.

3. Perform the processing using the input parameter values and
store the results in local variables.

4. Initialize any output parameters with appropriate values, bind
them with local variables, and transfer them to the client.

5. Use srv_sendinfo() to send the returned row to the client.

6. Use srv_sendstatus() to send the status to the client.



Transact-SQL User’s Guide 15-9

Adaptive Server Enterprise Release 11.5.x Creating Functions for ESPs

7. Use srv_senddone() to inform the client that the processing is done.

8. If there is an error condition, use srv_sendinfo() to send the error
message to the client.

See the Open Server Server-Library/C Reference Manual for
documentation of the Open Server routines.

Multithreading

Since Open Server is currently non-preemptive, all ESPs running on
the same server must yield to one another, using the Open Server
srv_yield() routine to suspend their XP Server thread and allow
another thread to execute.

See the chapter on Multithread Programming in the Open Server
Server-Library/C Reference Manual for more information.

ESP Function Example

xp_echo.c has an ESP that accepts a user-supplied input parameter
and echoes it to the ESP client, which is the process invoking the ESP.
This example includes the xp_message function, which sends
messages and status, and the xp_echo function which processes the
input parameter and performs the echoing. You can use this example
as a template for building your own ESP functions. The source is in
$SYBASE/esp/samples.

/*
** xp_echo.c
**
**      Description:
**              The following sample program is generic in
**              nature. It echoes an input string which is
**              passed as the first parameter to the xp_echo
**              ESP. This string is retrieved into a buffer
**              and then sent back (echoed) to the ESP client.
*/

#include <string.h>
#include <stdlib.h>
#include <malloc.h>

/* Required Open Server include files.*/
#include <ospublic.h>
#include <oserror.h>



15-10 Using Extended Stored Procedures

Creating Functions for ESPs Adaptive Server Enterprise Release 11.5.x

/*
** Constant defining the length of the buffer that receives the
** input string. All of the Adaptive Server parameters related
** to ESP may not exceed 255 char long.
*/

#define ECHO_BUF_LEN    255

/*
** Function:
**      xp_message
**      Purpose: Sends information, status and completion of the
**      command to the server.
** Input:
**      SRV_PROC *
**      char *  a message string.
** Output:
**      void
*/

void xp_message
(
        SRV_PROC *srvproc,  /* Pointer to Open Server thread
                            control structure */
        char     *message_string /* Input message string */
)

{
        /*
        ** Declare a variable that will contain information
        ** about the message being sent to the SQL client.
        */
        CS_SERVERMSG    *errmsgp;

        /*
        ** Allocate memory for this variable.
        */
        errmsgp = (CS_SERVERMSG *) malloc((CS_INT
           sizeof(CS_SERVERMSG));
        if (errmsgp == NULL)
                return;

        /*
        ** clean the structure */
        */
        memset(errmsgp,(CS_INT)0,(CS_INT) sizeof(CS_SERVERMSG));

        /*
        ** Put you rnumber in as the message number.
        */
        errmsgp->msgnumber = 25000;



Transact-SQL User’s Guide 15-11

Adaptive Server Enterprise Release 11.5.x Creating Functions for ESPs

        errmsgp->state = 0;

        /*
        **The message is fatal.
        */
        errmsgp->severity = SRV_FATAL_SERVER;

        /*
        ** Let’s copy the string over.
        */
        errmsgp->textlen = strlen(message_string);
        if (errmsgp->textlen >= CS_MAX_MSG )
                return;
        strncpy(errmsgp->text, message_string, errmsgp->textlen);
        errmsgp->status = (CS_FIRST_CHUNK | CS_LAST_CHUNK);

        srv_sendinfo(srvproc, errmsgp, CS_TRAN_UNDEFINED);

        /* Send the status to the client. */
        srv_sendstatus(srvproc, 1);

        /*
        ** A SRV_DONE_MORE instead of a SRV_DONE_FINAL must
        ** complete the result set of an Extended Stored
        ** Procedure.
        */
        srv_senddone(srvproc, SRV_DONE_MORE, 0, 0);

        free(errmsgp);

}

/*
** Function: xp_echo
** Purpose:
**      Given an input string, this string is echoed as an output
** string to the corresponding SQL (ESP) client.
** Input:
**      SRV_PROC *
** Output
**      SUCCESS or FAILURE
*/



15-12 Using Extended Stored Procedures

Creating Functions for ESPs Adaptive Server Enterprise Release 11.5.x

CS_RETCODE xp_echo
(
        SRV_PROC        *srvproc
)
{
        CS_INT          paramnum;  /* number of parameters */
        CS_CHAR         echo_str_buf[ECHO_BUF_LEN + 1];
                               /* buffer to hold input string */
        CS_RETCODE      result = CS_SUCCEED;
        CS_DATAFMT      paramfmt; /* input/output param format */
        CS_INT          len;      /* Length of input param */
        CS_SMALLINT     outlen;

        /*
        ** Get number of input parameters.*/

*/
        srv_numparams(srvproc, &paramnum);

        /*
        ** Only one parameter is expected.*/
        */
        if (paramnum != 1)
        {
                /*
                ** Send a usage error message.*/
                */
                xp_message(srvproc, "Invalid number of
                 parameters");
                result = CS_FAIL;
        }

        else
        {
                /*
                ** Perform initializations.
                */
                outlen = CS_GOODDATA;
                memset(&paramfmt, (CS_INT)0,
                  (CS_INT)sizeof(CS_DATAFMT));



Transact-SQL User’s Guide 15-13

Adaptive Server Enterprise Release 11.5.x Creating Functions for ESPs

                /*
                ** We are receiving data through an ESP as the
                ** first parameter. So describe this expected
                ** parameter.
                */
                if ((result == CS_SUCCEED) &&
                  srv_descfmt(srvproc, CS_GET
                  SRV_RPCDATA, 1, &paramfmt) != CS_SUCCEED)
                {
                        result = CS_FAIL;
                }

                /*
                ** Describe and bind the buffer to receive the
                ** parameter.
                */
                if ((result == CS_SUCCEED) &&
                  (srv_bind(srvproc, CS_GET, SRV_RPCDATA,
                   1, &paramfmt,(CS_BYTE *) echo_str_buf,
                   &len, &outlen) != CS_SUCCEED))
                {
                        result = CS_FAIL;
                }

                /* Receive the expected data.*/
                if ((result == CS_SUCCEED) &&
                  srv_xferdata(srvproc,CS_GET,SRV_RPCDATA)
                  != CS_SUCCEED)
                {
                        result = CS_FAIL;
                }

                /*
                ** Now we have the input info and are ready to
                ** send the output info.
                */
                if (result == CS_SUCCEED)
                {
                        /*
                        ** Perform initialization.
                        */
                        if (len == 0)
                                outlen = CS_NULLDATA;
                        else
                                outlen = CS_GOODDATA;

                        memset(&paramfmt, (CS_INT)0,
                          (CS_INT)sizeof(CS_DATAFMT));



15-14 Using Extended Stored Procedures

Creating Functions for ESPs Adaptive Server Enterprise Release 11.5.x

                        strcpy(paramfmt.name, "xp_echo");
                        paramfmt.namelen = CS_NULLTERM;
                        paramfmt.datatype = CS_CHAR_TYPE;
                        paramfmt.format = CS_FMT_NULLTERM;
                        paramfmt.maxlength = ECHO_BUF_LEN;
                        paramfmt.locale = (CS_LOCALE *) NULL;
                        paramfmt.status |= CS_CANBENULL;

                        /*
                        ** Describe the data being sent.
                        */
                        if ((result == CS_SUCCEED) &&
                                srv_descfmt(srvproc, CS_SET,
                                  SRV_ROWDATA, 1, &paramfmt)
                                  != CS_SUCCEED)
                        {
                                result = CS_FAIL;
                        }

                        /*
                        ** Describe and bind the buffer that
                        ** contains the data to be sent.
                        */
                        if ((result == CS_SUCCEED) &&
                                (srv_bind(srvproc, CS_SET,
                                SRV_ROWDATA, 1,
                                &paramfmt, (CS_BYTE *)
                                echo_str_buf, &len, &outlen)
                                != CS_SUCCEED))
                        {
                                result = CS_FAIL;
                        }

                        /*
                        ** Send the actual data.
                        */
                        if ((result == CS_SUCCEED) &&
                                srv_xferdata(srvproc, CS_SET,
                                SRV_ROWDATA)!= CS_SUCCEED)
                        {
                                result = CS_FAIL;
                        }
                }



Transact-SQL User’s Guide 15-15

Adaptive Server Enterprise Release 11.5.x Creating Functions for ESPs

                /*
                ** Indicate to the ESP client how the
                ** transaction was performed.
                */
                if (result == CS_FAIL)
                        srv_sendstatus(srvproc, 1);
                else
                        srv_sendstatus(srvproc, 0);

                /*
                ** Send a count of the number of rows sent to
                ** the client.
                */
                srv_senddone(srvproc,(SRV_DONE_COUNT |
                  SRV_DONE_MORE), 0, 1);

        }

        return result;

}

Building the DLL

You can use any compiler that can produce the required DLL on your
server platform.

For general information about compiling and linking a function that
uses the Open Server API, see the Open Client/Server Supplement.

Search Order for DLLs

Windows NT searches for a DLL in the following order:

1. The directory from which the application was invoked

2. The current directory

3. The system directory (SYSTEM32)

4. Directories listed in the PATH environment variable

UNIX searches for the library in the directories listed in the
LD_LIBRARY_PATH environment variable (on Solaris and Digital
UNIX) or SH_LIBRARY_PATH (on HP) in the order in which they
are listed.

If XP Server does not find the library for an ESP function in the search
path, it attempts to load it from $SYBASE/DLL on Windows NT or
$SYBASE/lib on other platforms.



15-16 Using Extended Stored Procedures

Creating Functions for ESPs Adaptive Server Enterprise Release 11.5.x

Absolute path names for the DLL are not supported.

Sample Makefile (UNIX)

The following makefile, make.unix, was used to create the
dynamically linked shared library for the xp_echo program on UNIX
platforms. It generates a file named examples.so on Solaris and Digital
UNIX and examples.sl on HP. The source is provided in
$SYBASE/samples/esp, so you can modify it for your own use.

To build the example library using this makefile, enter:

make -f make.unix

#
# This makefile creates a shared library.  It needs the open
# server header
# files usually installed in $SYBASE/include directory.
# This make file can be used for generating the template ESPs.
# It references the following macros:
#

# PROGRAM is the name of the shared library you may want to
create.

PROGRAM = example.so
BINARY = $(PROGRAM)
EXAMPLEDLL= $(PROGRAM)

# Include path where ospublic.h etc reside. You may have them in
# the standard places like /usr/lib etc.

INCLUDEPATH= $(SYBASE)/include

# Place where the shared library will be generated.
DLLDIR = .

RM = /usr/bin/rm
ECHO = echo
MODE = normal

# Directory where the source code is kept.
SRCDIR = .

# Where the objects will be generated.
OBJECTDIR= .



Transact-SQL User’s Guide 15-17

Adaptive Server Enterprise Release 11.5.x Creating Functions for ESPs

OBJS = xp_echo.o

CFLAGS = -I$(INCLUDEPATH)
LDFLAGS =  $(GLDFLAGS) -Bdynamic

DLLLDFLAGS=  -dy -G

#================================================================

$(EXAMPLEDLL) : $(OBJS)
-@$(RM) -f $(DLLDIR)/$(EXAMPLEDLL)
-@$(ECHO) "Loading $(EXAMPLEDLL)"
-@$(ECHO) " "
-@$(ECHO) "MODE: $(MODE)"
-@$(ECHO) "OBJS: $(OBJS)"
-@$(ECHO) "DEBUGOBJS: $(DEBUGOBJS)"
-@$(ECHO) " "

cd $(OBJECTDIR); \
ld -o $(DLLDIR)/$(EXAMPLEDLL) $(DEBUGOBJS) $(DLLLDFLAGS)

$(OBJS)
-@$(ECHO) "$(EXAMPLEDLL) done"
exit 0

#================================================================

$(OBJS) : $(SRCDIR)/xp_echo.c
cd $(SRCDIR); \
$(CC) $(CFLAGS) -o $(OBJECTDIR)/$(OBJS) -c xp_echo.c

Sample Makefile (Windows NT)

The following makefile, xp_echo.mak, was used to create the DLL for
the xp_echo program on Windows NT using Microsoft Visual C++. It
generates a file named xp_echo.dll. The source for the makefile is
provided in $SYBASE/samples/esp, so you can modify it for your own
use.

To build the example DLL using this makefile, enter:

nmake /f xp_echo.mak

# Nmake macros for building Windows 32-Bit apps

!include <ntwin32.mak>

all: xp_echo.dll



15-18 Using Extended Stored Procedures

Creating and Removing ESPs Adaptive Server Enterprise Release 11.5.x

# Update the object file if necessary

xp_echo.obj: xp_echo.c
$(cc) $(cflags) $(cvars) $(cdebug) xp_echo.c

# Update the xp_echo.dll if necessary

xp_echo.dll: xp_echo.obj
$(link) $(linkdebug) -def:xp_echo.def -out:xp_echo.dll \
xp_echo.obj shell32.lib libsrv.lib

Sample Definitions File

The following file, xp_echo.def, must be in the same directory as
xp_echo.mak. It lists every function to be used as an ESP function in
the EXPORTS section.

LIBRARY   examples

CODE      PRELOAD MOVEABLE DISCARDABLE
DATA      PRELOAD SINGLE

EXPORTS
        xp_echo .   1

Creating and Removing ESPs

Once you have created an ESP function and linked it into a DLL,
register it as an ESP in a database. This lets the user execute the
function as an ESP.

Use either of these methods to register an ESP:

• The Transact-SQL create procedure command

• The sp_addextendedproc system procedure

Using create procedure

The create procedure command syntax for creating an ESP is
compatible with proposed ANSI SQL3 syntax. The syntax is:



Transact-SQL User’s Guide 15-19

Adaptive Server Enterprise Release 11.5.x Creating and Removing ESPs

create procedure [ owner .] procedure_name
[[(]@ parameter_name datatype  [= default] [output]
[, @ parameter_name datatype  [= default]
[output]]...[)]] [with recompile]
as external name dll_name

The procedure_name is the name of the ESP as it is known in the
database. It must be the same as the name of its supporting function.

The parameter declarations are the same as for stored procedures, as
described in Chapter 14, “Using Stored Procedures.”

Adaptive Server ignores the with recompile clause if it is included in a
create procedure command used to create an ESP.

The dll_name is the name of the library containing the ESP’s
supporting function.

The dll_name can be specified as a name with no extension (for
example, msgs) or a name with a platform-specific extension, such as
msgs.dll on Windows NT or msgs.so on Solaris.

In either case, the platform-specific extension is assumed to be part of
the library’s actual file name.

Since create procedure registers an ESP in a specific database, you
should specify the database in which you are registering the ESP
before invoking the command. From isql, specify the database with
the use database command, if you are not already working in the
target database.

The following statements register an ESP supported by the xp_echo
routine described in the example on page 15-9, assuming that the
function is compiled in a DLL named examples.dll. The ESP is
registered in the pubs2 database.

use pubs2

create procedure xp_echo @in varchar(255)
as external name "examples.dll"

See create procedure in the Adaptive Server Reference Manual for more
information.

Using sp_addextendedproc

The sp_addextendedproc system procedure is compatible with the
syntax used by Microsoft SQL Server. You can use it as an alternative
to the create procedure command. The syntax is:

sp_addextendedproc esp_name, dll_name



15-20 Using Extended Stored Procedures

Creating and Removing ESPs Adaptive Server Enterprise Release 11.5.x

esp_name is the name of the ESP. It must match the name of the
function that supports the ESP.

dll_name is the name of the DLL containing the ESP’s supporting
function.

The sp_addextendedproc must be executed in the master database by a
user who has the sa_role. Therefore, sp_addextendedproc always
registers the ESP in the master database, unlike create procedure, which
registers the ESP in the current database, which can be any database.
Also, unlike the create procedure command, the syntax of
sp_addextendedproc does not allow for parameter checking in Adaptive
Server or for default values for parameters.

The following statements register in the master database an ESP
supported by the xp_echo routine described in the example on page
15-9, assuming that the function is compiled in a DLL named
examples.dll:

use master

sp_addextendedproc "xp_echo", "examples.dll"

See the Adaptive Server Reference Manual for a complete description of
the sp_addextendedproc command.

Removing an ESP

You can remove an ESP from the database using either the drop
procedure command or the sp_dropextendedproc system procedure.

The syntax for the drop procedure command is the same as for stored
procedures:

drop procedure [ owner .] procedure_name

The following command drops the xp_echo ESP using the Transact-
SQL command:

drop procedure xp_echo

The syntax for the sp_dropextendedproc system procedure is:

sp_dropextendedproc esp_name

For example:

sp_dropextendedproc xp_echo

Both methods drop the ESP from the database by removing
references to it in the sysobjects and syscomments system tables. They
have no effect on the underlying DLL.



Transact-SQL User’s Guide 15-21

Adaptive Server Enterprise Release 11.5.x Executing ESPs

Renaming ESPs

Because an ESP name is bound to the name of its function, you
cannot rename an ESP using sp_rename, as you can with a stored
procedure. To change the name of an ESP:

1. Remove the ESP with drop procedure or sp_dropextendedproc.

2. Rename and recompile the supporting function.

3. Re-create the ESP with the new name using create procedure or
sp_addextendedproc.

Executing ESPs

You execute an ESP using the same execute command that you use to
execute a regular stored procedure. See “Creating and Executing
Stored Procedures” on page 14-5 for syntax and other information
about executing stored procedures.

You can also execute an ESP remotely, in the same way that you
execute a regular stored procedure remotely. See “Executing
Procedures Remotely” on page 14-17 for information about
executing remote stored procedures.

Because the execution of any ESP involves a remote procedure call
between Adaptive Server and XP Server, you cannot combine
parameters by name and parameters by value in the same execute
command. All the parameters must be passed by name, or all must
be passed by value. This is the only way in which the execution of
extended stored procedures differs from that of regular stored
procedures.

ESPs can return:

• A status value indicating success or failure, and the reason for
failure

• Values of output parameters

• Result sets

An ESP function reports the return status value with the srv_sendstatus
Open Server routines. The return status values from srv_sendstatus are
application-specific. However, a status of zero indicates that the
request completed normally.

An ESP function returns the values of output parameters and result
sets using the srv_descfmt, srv_bind, and srv_xferdata Open Server
routine. See the “ESP Function Example” on page 15-9 and the Open



15-22 Using Extended Stored Procedures

System ESPs Adaptive Server Enterprise Release 11.5.x

Server Server-Library/C Reference Manual for more information about
passing values from an ESP function. From the Adaptive Server side,
returned values from an ESP are handled as they are for a regular
stored procedure.

System ESPs

The system ESP xp_cmdshell lets you execute an operating system
command on the server machine from within Adaptive Server.

In addition, there are several system ESPs that support features that
are available on Windows NT, such as the integration of Adaptive
Server with the Windows NT Event Log or Mail System.

The names of all system ESPs begin with “xp_”. They are created in
the sybsystemprocs database during Adaptive Server installation.
Since system ESPs are located in the sybsystemprocs database, their
permissions are set there. However, you can run system ESPs from
any database. The system ESPs are as follows:

• xp_cmdshell

• xp_deletemail

• xp_enumgroups

• xp_findnextmsg

• xp_logevent

• xp_readmail

• xp_sendmail

• xp_startmail

• xp_stopmail

See the Adaptive Server Reference Manual for documentation of the
system ESPs. In addition, Configuring Adaptive Server for Windows NT
discusses some NT-specific features in more detail, such as MAPI
and NT Event Log integration, which you implement using the NT-
specific system ESPs.



Transact-SQL User’s Guide 15-23

Adaptive Server Enterprise Release 11.5.x Getting Information About ESPs

Getting Information About ESPs

Use the sp_helpextendedproc system procedure to get information about
ESPs registered in the current database.

With no parameters, sp_helpextendedproc displays all the ESPs in the
database, with the names of the DLLs containing their associated
functions. With an ESP name as a parameter, it provides this
information only for the specified ESP.

sp_helpextendedproc getmsgs

ESP Name   DLL
--------   ---------
getmsgs    msgs.dll

Since the system ESPs are in the sybsystemprocs database, you must be
using the sybsystemprocs database to display their names and DLLs:

use sybsystemprocs
sp_helpextendedproc

ESP Name     DLL
--------     ---------
xp_freedll   sybyesp

xp_cmdshell  sybyesp

If the source text of an ESP was encrypted using sp_hidetext, Adaptive
Server displays a message advising you that the text is hidden. For
information about hiding source text, see sp_hidetext in the Adaptive
Server Reference Manual.

ESP Exceptions and Messages

Adaptive Server handles all messages and exceptions from XP
Server. It logs standard ESP messages in the log file in addition to
sending them to the client. User-defined messages from user-defined
ESPs are not logged, but they are sent to the client.

ESP-related messages may be generated by XP Server, by a system
procedure that creates or manipulates ESPs, or by a system ESP. See
the Error Messages manual for the list of ESP-related messages.

A function for a user-defined ESP can generate a message using the
srv_sendinfo Open Server routine. See the sample xp_message function
in the “ESP Function Example” on page 15-9.



15-24 Using Extended Stored Procedures

ESP Exceptions and Messages Adaptive Server Enterprise Release 11.5.x



Transact-SQL User’s Guide 16-1

16 Triggers: Enforcing Referential
Integrity 16.

A trigger is a stored procedure that goes into effect when you insert,
delete, or update data in a table. You can use triggers to perform a
number of automatic actions, such as cascading changes through
related tables, enforcing column restrictions, comparing the results
of data modifications, and maintaining the referential integrity of
data across a database.

This chapter discusses:

• How Triggers Work   16-1

• Creating Triggers   16-3

• Using Triggers to Maintain Referential Integrity   16-6

• Multirow Considerations   16-18

• Rolling Back Triggers   16-22

• Nesting Triggers   16-24

• Rules Associated with Triggers   16-27

• Dropping Triggers   16-31

• Getting Information About Triggers   16-31

How Triggers Work

Triggers can help maintain the referential integrity of your data by
maintaining consistency among logically related data in different
tables. You have referential integrity when the primary key values
match the corresponding foreign key values.

The main advantage of triggers is that they are automatic. They work
no matter what caused the data modification—a clerk’s data entry or
an application action. A trigger is specific to one or more of the data
modification operations, update, insert, and delete. A trigger is executed
once for each SQL statement.

For example, to prevent users from removing any publishing
companies from the publishers table, you could write the following
trigger:



16-2 Triggers: Enforcing Referential Integrity

How Triggers Work Adaptive Server Enterprise Release 11.5.x

create trigger del_pub
on publishers
for delete
as
begin

rollback transaction
print "You cannot delete any publishers!"

end

The next time someone tries to remove a row from the publishers
table, the del_pub trigger cancels the deletion, rolls back the
transaction, and prints a message to that effect.

You can remove a trigger at any time, for example:

drop trigger del_pub

A trigger “fires” only after the data modification statement has
completed and Adaptive Server has checked for any datatype, rule,
or integrity constraint violation. The trigger and the statement that
fires it are treated as a single transaction that can be rolled back from
within the trigger. If Adaptive Server detects a severe error, the entire
transaction is rolled back.

What Triggers Can Do

In what situations are triggers most useful?

• Triggers can cascade changes through related tables in the
database. For example, a delete trigger on the title_id column of
the titles table could delete matching rows in other tables, using
the title_id column as a unique key to locating rows in titleauthor
and roysched.

• Triggers can disallow, or roll back, changes that would violate
referential integrity, canceling the attempted data modification
transaction. Such a trigger might go into effect when you try to
insert a foreign key that does not match its primary key. For
example, you could create an insert trigger on titleauthor that
rolled back an insert if the new titleauthor.title_id value did not
have a matching value in titles.title_id.

• Triggers can enforce restrictions that are much more complex
than those that are defined with rules. Unlike rules, triggers can
reference columns or database objects. For example, a trigger can
roll back updates that attempt to increase a book’s price by more
than 1 percent of the advance.



Transact-SQL User’s Guide 16-3

Adaptive Server Enterprise Release 11.5.x Creating Triggers

• Triggers can perform simple “what if” analyses. For example, a
trigger can compare the state of a table before and after a data
modification and take action based on that comparison.

Using Triggers vs. Integrity Constraints

As an alternative to using triggers, you can use the referential
integrity constraint of the create table statement to enforce referential
integrity across tables in the database. However, referential integrity
constraints differ from triggers in that they cannot:

• Cascade changes through related tables in the database

• Enforce complex restrictions by referencing other columns or
database objects

• Perform “what if” analyses

Also, referential integrity constraints do not roll back the current
transaction as a result of enforcing data integrity. With triggers, you
can either roll back or continue the transaction, depending on how
you handle referential integrity. For information about transactions,
see Chapter 18, “Transactions: Maintaining Data Consistency and
Recovery.”

If your application requires one of the above tasks, use a trigger.
Otherwise, use a referential integrity constraint to enforce data
integrity. Adaptive Server checks referential integrity constraints
before it checks triggers so that a data modification statement that
violates the constraint does not also fire the trigger. For more
information about referential integrity constraints, see Chapter 7,
“Creating Databases and Tables.”

Creating Triggers

A trigger is a database object. When you create a trigger, you specify
the table and the data modification commands that should “fire” or
activate the trigger. Then, you specify the action(s) the trigger is to
take.

For example, this trigger prints a message every time anyone tries to
insert, delete, or update data in the titles table:



16-4 Triggers: Enforcing Referential Integrity

Creating Triggers Adaptive Server Enterprise Release 11.5.x

create trigger t1
on titles
for insert, update, delete
as
print "Now modify the titleauthor table the same
way."

➤ Note
Except for the trigger named deltitle, the triggers discussed in this chapter

are not included in the pubs2 database shipped with Adaptive Server. To

work with the examples shown in this chapter, create each trigger example

by typing in the create trigger statement. Each new trigger for the same

operation—insert, update or delete—on a table or column overwrites the

previous one without warning, and old triggers are dropped automatically.

create trigger Syntax

Here is the complete create trigger syntax:

create trigger [ owner .] trigger_name
on [ owner .] table_name
{for {insert , update , delete}
as SQL_statements

Or, using the if update clause:

create trigger [ owner .] trigger_name
on [ owner .] table_name
for {insert , update}
as
    [if update ( column_name )
        [{and | or} update ( column_name )]...]
        SQL_statements
    [if update ( column_name )
        [{and | or} update ( column_name )]...
        SQL_statements ]...

The create clause creates the trigger and names it. A trigger’s name
must conform to the rules for identifiers.

The on clause gives the name of the table that activates the trigger.
This table is sometimes called the trigger table.

A trigger is created in the current database, although it can reference
objects in other databases. The owner name that qualifies the trigger
name must be the same as the one in the table. No one except the



Transact-SQL User’s Guide 16-5

Adaptive Server Enterprise Release 11.5.x Creating Triggers

table owner can create a trigger on a table. If the table owner is given
with the table name in the create trigger clause or the on clause, it must
also be specified in the other clause.

The for clause specifies which data modification commands on the
trigger table activate the trigger. In the earlier example, an insert,
update, or delete to titles makes the message print.

The SQL statements specify trigger conditions and trigger actions.
Trigger conditions specify additional criteria that determine whether
the insert, delete, or update will cause the trigger actions to be carried
out. You group multiple trigger actions in an if clause with begin and
end.

An if update clause tests for an insert or update to a specified column.
For updates, the if update clause evaluates to true when the column
name is included in the set clause of an update statement, even if the
update does not change the value of the column. Do not use the if
update clause with delete. You can specify more than one column, and
you can use more than one if update clause in a create trigger statement.
Since you specify the table name in the on clause, do not use the table
name in front of the column name with if update.

SQL Statements That Are Not Allowed in Triggers

Since triggers execute as part of a transaction, the following
statements are not allowed in a trigger:

• All create commands, including create database, create table, create
index, create procedure, create default, create rule, create trigger, and create
view

• All drop commands

• alter table and alter database

• truncate table

• grant and revoke

• update statistics

• reconfigure

• load database and load transaction

• disk init, disk mirror, disk refit, disk reinit, disk remirror, disk unmirror

• select into



16-6 Triggers: Enforcing Referential Integrity

Using Triggers to Maintain Referential Integrity Adaptive Server Enterprise Release 11.5.x

After Creating a Trigger

After you create a trigger, the source text describing the trigger is
stored in the text column of the syscomments system table. In previous
releases of SQL Server, users often deleted the source text from
syscomments, in order to save disk space and remove confidential
information from this public area. Do not remove this information
from syscomments; doing so can cause problems for future upgrades
of Adaptive Server. Instead, encrypt the text in syscomments by using
the sp_hidetext system procedure, described in the Adaptive Server
Reference Manual. For more information, see “Compiled Objects” on
page 1-3.

Using Triggers to Maintain Referential Integrity

Triggers are used to maintain referential integrity, which assures that
vital data in your database—such as the unique identifier for a given
piece of data—remains accurate and can be used as the database
changes. Referential integrity is coordinated through the use of
primary and foreign keys.

The primary key is a column or combination of columns whose
values uniquely identify a row. The value cannot be NULL and must
have a unique index. A table with a primary key is eligible for joins
with foreign keys in other tables. Think of the primary key table as
the master table in a master-detail relationship. There can be many
such master-detail groups in a database.

You can use the sp_primarykey procedure to mark a primary key. This
marks the key for use with sp_helpjoins and adds it to the syskeys table.

For example, the title_id column is the primary key of titles. It
uniquely identifies the books in titles and joins with title_id in
titleauthor, salesdetail, and roysched. The titles table is the master table
in relation to titleauthor, salesdetail, and roysched.

The “Diagram of the pubs2 Database” on page A-27 shows how the
pubs2 tables are related. The “Diagram of the pubs3 Database” on
page B-29 provides the same information for the pubs3 database.

The foreign key is a column or combination of columns whose
values match the primary key. A foreign key does not have to be
unique. It is often in a many-to-one relationship to a primary key.
Foreign key values should be copies of the primary key values. That
means no value in the foreign key should exist unless the same value
exists in the primary key. A foreign key may be null; if any part of a
composite foreign key is null, the entire foreign key must be null.



Transact-SQL User’s Guide 16-7

Adaptive Server Enterprise Release 11.5.x Using Triggers to Maintain Referential Integrity

Tables with foreign keys are often called detail tables or dependent
tables to the master table.

You can use the sp_foreignkey procedure to mark foreign keys in your
database. This flags them for use with sp_helpjoins and other
procedures that reference the syskeys table.

The title_id columns in titleauthor, salesdetail, and roysched are foreign
keys; the tables are detail tables.

How Referential Integrity Triggers Work

In most cases, you can enforce referential integrity between tables
using the referential constraints described under “Specifying
Referential Integrity Constraints” on page 7-32, because the
maximum number of references allowed for a single table is 200. If a
table exceeds that limit, or has special referential integrity needs, use
referential integrity triggers.

Referential integrity triggers keep the values of foreign keys in line
with those in primary keys. When a data modification affects a key
column, triggers compare the new column values to related keys by
using temporary work tables called trigger test tables. When you
write your triggers, you base your comparisons on the data that is
temporarily stored in the trigger test tables.

Testing Data Modifications Against the Trigger Test Tables

Adaptive Server uses two special tables in trigger statements: the
deleted table and the inserted table. These are temporary tables used in
trigger tests. When you write triggers, you can use these tables to test
the effects of a data modification and to set conditions for trigger
actions. You cannot directly alter the data in the trigger test tables,
but you can use the tables in select statements to detect the effects of
an insert, update, or delete.

• The deleted table stores copies of the affected rows during delete
and update statements. During the execution of a delete or update
statement, rows are removed from the trigger table and
transferred to the deleted table. The deleted and trigger tables
ordinarily have no rows in common.

• The inserted table stores copies of the affected rows during insert
and update statements. During an insert or an update, new rows are
added to the inserted and trigger tables at the same time. The rows
in inserted are copies of the new rows in the trigger table.



16-8 Triggers: Enforcing Referential Integrity

Using Triggers to Maintain Referential Integrity Adaptive Server Enterprise Release 11.5.x

The following trigger fragment uses the inserted table to test for
changes to the titles table title_id column:

if (select count(*)
    from titles, inserted
    where titles.title_id = inserted.title_id) !=
    @@rowcount

An update is, effectively, a delete followed by an insert; the old rows
are copied to the deleted table first; then the new rows are copied to
the trigger table and to the inserted table. The following illustration
shows the condition of the trigger test tables during an insert, a delete,
and an update:

Figure 16-1: Trigger test tables during insert, delete, and update operations

When setting trigger conditions, use the trigger test tables that are
appropriate for the data modification. It is not an error to reference
deleted while testing an insert or inserted while testing a delete;
however, those trigger test tables will not contain any rows.

inserted table

deleted table

deleted table

inserted tabletrigger table

trigger table

trigger table

New Data

Old Data

New Data

Old Data

New DataNew Data

insert

delete

update

Copy

Move

Move

Copy



Transact-SQL User’s Guide 16-9

Adaptive Server Enterprise Release 11.5.x Using Triggers to Maintain Referential Integrity

➤ Note
A given trigger fires only once per query. If trigger actions depend on the

number of rows affected by a data modification, use tests, such as an

examination of @@rowcount for multirow data modifications, and take

appropriate actions.

The following trigger examples will accommodate multirow data
modifications where necessary. The @@rowcount variable, which
stores the “number of rows affected” by the most recent data
modification operation, tests for a multirow insert, delete, or update. If
any other select statement precedes the test on @@rowcount within the
trigger, use local variables to store the value for later examination.
All Transact-SQL statements that do not return values reset
@@rowcount to 0.

Insert Trigger Example

When you insert a new foreign key row, make sure the foreign key
matches a primary key. The trigger should check for joins between
the inserted rows (using the inserted table) and the rows in the
primary key table, and then roll back any inserts of foreign keys that
do not match a key in the primary key table.

The following trigger compares the title_id values from the inserted
table with those from the titles table. It assumes that you are making
an entry for the foreign key and that you are not inserting a null
value. If the join fails, the transaction is rolled back.



16-10 Triggers: Enforcing Referential Integrity

Using Triggers to Maintain Referential Integrity Adaptive Server Enterprise Release 11.5.x

create trigger forinsertrig1
on salesdetail
for insert
as
if (select count(*)
    from titles, inserted
    where titles.title_id = inserted.title_id) !=
    @@rowcount
/* Cancel the insert and print a message.*/
  begin
    rollback transaction
    print "No, the title_id does not exist in
    titles."
  end
/* Otherwise, allow it. */
else
  print "Added! All title_id’s exist in titles."

In the above example, @@rowcount refers to the number of rows
added to the salesdetail table. This is also the number of rows added
to the inserted table. The trigger joins titles and inserted to determine
whether all the title_id’s added to salesdetail exist in the titles table. If
the number of joined rows, which is determined by the select count(*)
query, differs from @@rowcount, then one or more of the inserts is
incorrect, and the transaction is canceled.

This trigger prints one message if the insert is rolled back and
another if it is accepted. To test for the first condition, try the
following insert statement:

insert salesdetail
values ("7066", "234517", "TC9999", 70, 45)

To test for the second condition, enter this statement:

insert salesdetail
values ("7896", "234518", "TC3218", 75, 80)

Delete Trigger Examples

When you delete a primary key row, you should delete
corresponding foreign key rows in dependent tables. This preserves
referential integrity by ensuring that detail rows are removed when
their master row is deleted. If you do not delete the corresponding
rows in the dependent tables, you could end up with a database that
had detail rows that could not be retrieved or identified. To properly
delete the dependent foreign key rows, use a trigger that performs a
cascading delete.



Transact-SQL User’s Guide 16-11

Adaptive Server Enterprise Release 11.5.x Using Triggers to Maintain Referential Integrity

Cascading Delete Example

When a delete statement on titles is executed, one or more rows leave
the titles table and are added to deleted. A trigger can check the
dependent tables—titleauthor, salesdetail, and roysched—to see if they
have any rows with a title_id that matches the title_ids removed from
titles and is now stored in the deleted table. If the trigger finds any
such rows, it removes them.

create trigger delcascadetrig
on titles
for delete
as
delete titleauthor
from titleauthor, deleted
where titleauthor.title_id = deleted.title_id
/* Remove titleauthor rows that match deleted
** (titles) rows.*/

delete salesdetail
from salesdetail, deleted
where salesdetail.title_id = deleted.title_id
/* Remove salesdetail rows that match deleted
** (titles) rows.*/

delete roysched
from roysched, deleted
where roysched.title_id = deleted.title_id
/* Remove roysched rows that match deleted
** (titles) rows.*/

Restricted Delete Examples

In practice, you may want to keep some of the detail rows, either for
historical purposes (to check how many sales were made on
discontinued titles while they were active) or because transactions
on the detail rows are not yet complete. A well-written trigger
should take these factors into consideration.

Preventing Primary Key Deletions

The deltitle trigger supplied with the pubs2 database prevents the
deletion of a primary key if there are any detail rows for that key in
the salesdetail table. This trigger preserves the ability to retrieve rows
from salesdetail:



16-12 Triggers: Enforcing Referential Integrity

Using Triggers to Maintain Referential Integrity Adaptive Server Enterprise Release 11.5.x

create trigger deltitle
on titles
for delete
as
if (select count(*)
    from deleted, salesdetail
    where salesdetail.title_id =
    deleted.title_id) > 0
  begin
    rollback transaction
    print "You cannot delete a title with sales."
  end

In this trigger, the row or rows deleted from titles are tested by being
joined with the salesdetail table. If a join is found, the transaction is
canceled.

Similarly, the following restricted delete prevents deletes if the
primary table, titles, has dependent children in titleauthor. Instead of
counting the rows from deleted and titleauthor, it checks to see if
title_id was deleted. This method is more efficient for performance
reasons because it checks for the existence of a particular row rather
than going through the entire table and counting all the rows.

Recording Errors That Occur

The following trigger uses the raiserror command for the error
message 35003. raiserror sets a system flag to record that the error
occurred. Before trying this example, add error message 35003 to the
sysusermessages system table:

sp_addmessage 35003, "restrict_dtrig - delete
failed: row exists in titleauthor for this
title_id."

The trigger is as follows:

create trigger restrict_dtrig
on titles
for delete as
if exists (select * from titleauthor, deleted where
          titleauthor.title_id = deleted.title_id)
   begin
           rollback transaction
           raiserror 35003
           return
   end

To test this trigger, try the following delete statement:



Transact-SQL User’s Guide 16-13

Adaptive Server Enterprise Release 11.5.x Using Triggers to Maintain Referential Integrity

delete titles
where title_id = "PS2091"

Update Trigger Examples

The following example cascades an update from the primary table
titles to the dependent tables titleauthor and roysched.

create trigger cascade_utrig
on titles
for update as
if update(title_id)
begin
     update titleauthor
           set title_id = inserted.title_id
           from titleauthor, deleted, inserted
           where deleted.title_id = titleauthor.title_id
     update roysched
           set title_id = inserted.title_id
           from roysched, deleted, inserted
           where deleted.title_id = roysched.title_id
     update salesdetail
           set title_id = inserted.title_id
           from salesdetail, deleted, inserted
           where deleted.title_id = salesdetail.title_id
end

To test this trigger, suppose that the book Secrets of Silicon Valley was
reclassified to a psychology book from popular_comp. The following
query updates the title_id PC8888 to PS8888 in titleauthor, roysched,
and titles.

update titles
set title_id = "PS8888"
where title_id = "PC8888"

Restricted Update Triggers

Since a primary key is the unique identifier for its row and for foreign
key rows in other tables, an attempt to update a primary key should
be taken very seriously. In this case, you need to protect referential
integrity by rolling back the update unless specified conditions are
met.

It is best to prohibit any editing changes to a primary key, for
example by revoking all permissions on that column. However, if



16-14 Triggers: Enforcing Referential Integrity

Using Triggers to Maintain Referential Integrity Adaptive Server Enterprise Release 11.5.x

you want to prohibit updates only under certain circumstances, use
a trigger.

Restricted Update Trigger Using Date Functions

The following trigger prevents updates to titles.title_id on the
weekend. The if update clause in stopupdatetrig allows you to focus on
a particular column, titles.title_id. Modifications to the data in that
column cause the trigger to go into action. Changes to the data in
other columns do not. When this trigger detects an update that
violates the trigger conditions, it cancels the update and prints a
message. If you would like to test this one, substitute the current day
of the week for “Saturday” or “Sunday”.

create trigger stopupdatetrig
on titles
for update
as
/* If an attempt is made to change titles.title_id
** on Saturday or Sunday, cancel the update. */
if update (title_id)
    and datename(dw, getdate())
    in ("Saturday", "Sunday")
  begin
    rollback transaction
    print "We do not allow changes to "
    print "primary keys on the weekend."
  end

Restricted Update Triggers with Multiple Actions

You can specify multiple trigger actions on more than one column
using if update. The following example modifies stopupdatetrig to
include additional trigger actions for updates to titles.price or
titles.advance. In addition to preventing updates to the primary key
on weekends, it prevents updates to the price or advance of a title,
unless the total revenue amount for that title surpasses its advance
amount. You can use the same trigger name because the modified
trigger replaces the old trigger when you create it again.



Transact-SQL User’s Guide 16-15

Adaptive Server Enterprise Release 11.5.x Using Triggers to Maintain Referential Integrity

create trigger stopupdatetrig
on titles
for update
as
if update (title_id)
  and datename(dw, getdate())
  in ("Saturday", "Sunday")
  begin
    rollback transaction
    print "We do not allow changes to"
    print "primary keys on the weekend!"
  end
if update (price) or update (advance)
  if exists (select * from inserted
    where (inserted.price * inserted.total_sales)
    < inserted.advance)
    begin
      rollback transaction
      print "We do not allow changes to price or"
      print "advance for a title until its total"
      print "revenue exceeds its latest advance."
    end

The next example, created on titles, prevents update if any of the
following conditions is true:

• The user tries to change a value in the primary key title_id in titles,

• The dependent key pub_id is not found in publishers, or

• The target column does not exist or is null.

This example assumes that the following error messages have been
added to sysusermessages:

sp_addmessage 35004, "titles_utrg - Update Failed: update of
primary keys %1! is not allowed."

sp_addmessage 35005, "titles_utrg - Update Failed: %1! not found
in authors."



16-16 Triggers: Enforcing Referential Integrity

Using Triggers to Maintain Referential Integrity Adaptive Server Enterprise Release 11.5.x

The trigger is as follows:

create trigger title_utrg
on titles
for update as
begin
     declare @num_updated int,
             @col1_var varchar(20),
             @col2_var varchar(20)
/* Determine how many rows were updated. */
select @num_updated = @@rowcount
    if @num_updated = 0
    return
/* Ensure that title_id in titles is not changed. */
if update(title_id)
    begin
       rollback transaction
     select @col1_var = title_id from inserted
     raiserror 35004 , @col1_var
     return
   end
 /* Make sure dependencies to the publishers table are accounted
for. */
 if update(pub_id)
   begin
     if (select count(*) from inserted, publishers
         where inserted.pub_id = publishers.pub_id
         and inserted.pub_id is not null) != @num_updated
     begin
         rollback transaction
         select @col1_var = pub_id from inserted
         raiserror 35005, @col1_var
         return
     end
   end
/* If the column is null, raise error 24004 and rollback the
** trigger. If the column is not null, update the roysched table
** restricting the update. */
   if update(price)
     begin
         if exists (select count(*) from inserted
         where price = null)
     begin
         rollback trigger with
         raiserror 24004 "Update failed : Price cannot be null. "
     end



Transact-SQL User’s Guide 16-17

Adaptive Server Enterprise Release 11.5.x Using Triggers to Maintain Referential Integrity

     else
     begin
         update roysched
         set lorange = 0,
         hirange = price * 1000
         from inserted
         where roysched.title_id =  inserted.title_id
     end
    end
end

To test for the first error message, 35004, try the following query:

update titles
set title_id = "BU7777"
where title_id = "BU2075"

To test for the second error message, 35005, try this query:

update titles
set pub_id = "7777"
where pub_id = "0877"

To test for the third error, which generates message 24004, try this
query:

update titles
set price = 10.00
where title_id = "PC8888"

This query fails because the price column in titles is null. If it were not
null, it would have updated the price for title PC8888 and performed
the necessary recalculations for the roysched table. Error 24004 is not
in sysusermessages but it is valid in this case. It demonstrates the
“rollback trigger with raiserror” section of the code.

Updating a Foreign Key

A change or an update to a foreign key by itself is probably an error.
A foreign key is just a copy of the primary key. Never design the two
to be independent. If you want to allow updates of a foreign key, you
should protect integrity by creating a trigger that checks updates
against the master table and rolls them back if they do not match the
primary key.

In the following example, the trigger tests for two possible sources of
failure: either the title_id is not in the salesdetail table or it is not in the
titles table.

This example uses nested if...else statements. The first if statement is
true when the value in the where clause of the update statement does



16-18 Triggers: Enforcing Referential Integrity

Multirow Considerations Adaptive Server Enterprise Release 11.5.x

not match a value in salesdetail, that is, the inserted table will not
contain any rows, and the select returns a null value. If this test is
passed, the next if statement ascertains whether the new row or rows
in the inserted table join with any title_id in the titles table. If any row
does not join, the transaction is rolled back, and an error message is
printed. If the join succeeds, a different message is printed.

create trigger forupdatetrig
on salesdetail
for update
as
declare @row int
/* Save value of rowcount. */
select @row = @@rowcount
if update (title_id)
  begin
    if (select distinct inserted.title_id
        from inserted) is null
      begin
        rollback transaction
        print "No, the old title_id must be in"
        print "salesdetail."
      end
    else
      if (select count(*)
          from titles, inserted
          where titles.title_id =
          inserted.title_id) != @row
        begin
          rollback transaction
          print "No, the new title_id is not in"
          print "titles."
        end
      else
        print "salesdetail table updated"
  end

Multirow Considerations

Multirow considerations are particularly important when the
function of a trigger is to recalculate summary values, or provide
ongoing tallies.

Triggers used to maintain summary values should contain group by
clauses or subqueries that perform implicit grouping. This creates
summary values when more than one row is being inserted,
updated, or deleted. Since a group by clause imposes extra overhead,



Transact-SQL User’s Guide 16-19

Adaptive Server Enterprise Release 11.5.x Multirow Considerations

the following examples are written to test whether @@rowcount = 1,
meaning that only one row in the trigger table was affected. If
@@rowcount = 1, the trigger actions take effect without a group by
clause.

Insert Trigger Example Using Multiple Rows

The following insert trigger updates the total_sales column in the
titles table every time a new salesdetail row is added. It goes into effect
whenever you record a sale by adding a row to the salesdetail table. It
updates the total_sales column in the titles table so that total_sales is
equal to its previous value plus the value added to salesdetail.qty. This
keeps the totals up to date for inserts into salesdetail.qty.

create trigger intrig
on salesdetail
for insert as
    /* check value of @@rowcount */
if @@rowcount = 1
    update titles
      set total_sales = total_sales + qty
      from inserted
      where titles.title_id = inserted.title_id
else
    /* when @@rowcount is greater than 1,
       use a group by clause */
    update titles
      set total_sales =
        total_sales + (select sum(qty)
      from inserted
      group by inserted.title_id
      having titles.title_id = inserted.title_id)

Delete Trigger Example Using Multiple Rows

The next example is a delete trigger that updates the total_sales
column in the titles table every time one or more salesdetail rows are
deleted.



16-20 Triggers: Enforcing Referential Integrity

Multirow Considerations Adaptive Server Enterprise Release 11.5.x

create trigger deltrig
on salesdetail
for delete
as
    /* check value of @@rowcount */
if @@rowcount = 1
    update titles
      set total_sales = total_sales - qty
      from deleted
      where titles.title_id = deleted.title_id
else
    /* when rowcount is greater than 1,
       use a group by clause */
    update titles
      set total_sales =
        total_sales - (select sum(qty)
      from deleted
      group by deleted.title_id
      having titles.title_id = deleted.title_id)

This trigger goes into effect whenever a row is deleted from the
salesdetail table. It updates the total_sales column in the titles table so
that total_sales is equal to its previous value minus the value
subtracted from salesdetail.qty.

Update Trigger Example Using Multiple Rows

The following update trigger updates the total_sales column in the
titles table every time the qty field in a salesdetail row is updated.
Recall that an update is an insert followed by a delete. This trigger
references both the inserted and the deleted trigger test tables.

create trigger updtrig
on salesdetail
for update
as
if update (qty)
begin
    /* check value of @@rowcount */
    if @@rowcount = 1
        update titles
          set total_sales = total_sales +
            inserted.qty - deleted.qty
          from inserted, deleted
          where titles.title_id = inserted.title_id
          and inserted.title_id = deleted.title_id
    else



Transact-SQL User’s Guide 16-21

Adaptive Server Enterprise Release 11.5.x Multirow Considerations

    /* when rowcount is greater than 1,
       use a group by clause */
    begin
        update titles
          set total_sales = total_sales +
            (select sum(qty)
                from inserted
                group by inserted.title_id
                having titles.title_id =
                inserted.title_id)
        update titles
          set total_sales = total_sales -
            (select sum(qty)
                from deleted
                group by deleted.title_id
                having titles.title_id =
                deleted.title_id)
    end
end

Conditional Insert Trigger Example Using Multiple Rows

The triggers examined so far have looked at each data modification
statement as a whole. If one row of a four-row insert was
unacceptable, the whole insert was unacceptable and the transaction
was rolled back.

However, you do not have to roll back all data modifications simply
because some of them are unacceptable. Using a correlated subquery
in a trigger can force the trigger to examine the modified rows one by
one. See “Using Correlated Subqueries” on page 5-28 for more
information on correlated subqueries. The trigger can then take
different actions on different rows.

The following trigger example assumes the existence of a table called
junesales. Here is its create statement:

create table junesales
(stor_id    char(4)     not null,
ord_num     varchar(20) not null,
title_id    tid         not null,
qty         smallint    not null,
discount    float       not null)

You should insert four rows in the junesales table, in order to test the
conditional trigger. Two of the junesales rows have title_ids that do
not match any of those already in the titles table.



16-22 Triggers: Enforcing Referential Integrity

Rolling Back Triggers Adaptive Server Enterprise Release 11.5.x

insert junesales values ("7066", "BA27619", "PS1372", 75, 40)

insert junesales values ("7066", "BA27619", "BU7832", 100, 40)

insert junesales values ("7067", "NB-1.242", "PSxxxx", 50, 40)

insert junesales values ("7131", "PSyyyy", "PSyyyy", 50, 40)

When you insert data from junesales into salesdetail, the statement
looks like this:

insert salesdetail
select * from junesales

What if you want to examine each of the records you are trying to
insert? The trigger conditionalinsert analyzes the insert row by row
and deletes the rows that do not have a title_id in titles:

create trigger conditionalinsert
on salesdetail
for insert as
if
(select count(*) from titles, inserted
where titles.title_id = inserted.title_id)
    != @@rowcount
begin
  delete salesdetail from salesdetail, inserted
    where salesdetail.title_id = inserted.title_id
    and inserted.title_id not in
    (select title_id from titles)
  print "Only records with matching title_ids
    added."
end

The trigger deletes the unwanted rows. This ability to delete rows
that have just been inserted relies on the order in which processing
occurs when triggers are fired. First, the rows are inserted into the
table and the inserted table; then, the trigger fires.

Rolling Back Triggers

You can roll back triggers using either the rollback trigger statement or
the rollback transaction statement (if the trigger is fired as part of a
transaction). However, rollback trigger rolls back only the effect of the
trigger and the statement that caused the trigger to fire; rollback
transaction rolls back the entire transaction. For example:

begin tran
insert into publishers (pub_id) values ("9999")
insert into publishers (pub_id) values ("9998")
commit tran



Transact-SQL User’s Guide 16-23

Adaptive Server Enterprise Release 11.5.x Rolling Back Triggers

If the second insert statement causes a trigger on publishers to issue a
rollback trigger, only that insert is affected; the first insert is not rolled
back. If that trigger issues a rollback transaction instead, both insert
statements are rolled back as part of the transaction.

Following is the syntax for rollback trigger:

rollback trigger
[with raiserror_statement ]

The syntax for rollback transaction is described in Chapter 18,
“Transactions: Maintaining Data Consistency and Recovery.”

The raiserror_statement specifies a raiserror statement that prints a
user-defined error message and sets a system flag to record that an
error condition has occurred. This provides the ability to raise an
error to the client when the rollback trigger is executed, so that the
transaction state in the error reflects the rollback. For example:

rollback trigger with raiserror 25002
    "title_id does not exist in titles table."

For more information about raiserror, see Chapter 13, “Using Batches
and Control-of-Flow Language.”

When the rollback trigger is executed, Adaptive Server aborts the
currently executing command and halts execution of the rest of the
trigger. If the trigger that issues the rollback trigger is nested within
other triggers, Adaptive Server rolls back all the work done in these
triggers up to and including the update that caused the first trigger
to fire.

The following example of an insert trigger performs a similar task to
the trigger forinsertrig1 described on page 16-10. However, this
trigger uses a rollback trigger instead of a rollback transaction to raise an
error when it rolls back the insertion but not the transaction.

create trigger forinsertrig2
on salesdetail
for insert
as
if (select count(*) from titles, inserted
    where titles.title_id = inserted.title_id) !=
    @@rowcount
   rollback trigger with raiserror 25003
     "Trigger rollback: salesdetail row not added
     because a title_id does not exist in titles."

When triggers that include rollback transaction statements are executed
from a batch, they abort the entire batch. In the following example, if
the insert statement fires a trigger that includes a rollback transaction



16-24 Triggers: Enforcing Referential Integrity

Nesting Triggers Adaptive Server Enterprise Release 11.5.x

(such as forinsertrig1), the delete statement will not be executed, since
the batch will be aborted:

insert salesdetail values ("7777", "JR123",
    "PS9999", 75, 40)
delete salesdetail where stor_id = "7067"

If triggers that include rollback transaction statements are fired from
within a user-defined transaction, the rollback transaction rolls back the
entire batch. In the following example, if the insert statement fires a
trigger that includes a rollback transaction, the update statement will also
be rolled back:

begin tran
update stores set payterms = "Net 30"
    where stor_id = "8042"
insert salesdetail values ("7777", "JR123",
    "PS9999", 75, 40)
commit tran

See Chapter 18, “Transactions: Maintaining Data Consistency and
Recovery,” for information on user-defined transactions.

Adaptive Server ignores a rollback trigger executed outside of a trigger
and does not issue a raiserror associated with the statement. However,
a rollback trigger executed outside a trigger but inside a transaction
generates an error that causes Adaptive Server to roll back the
transaction and abort the current statement batch.

Nesting Triggers

Triggers can nest to a depth of 16 levels. The current nesting level is
stored in the @@nestlevel global variable. Nesting is enabled at
installation. A System Administrator can turn trigger nesting on and
off with the allow nested triggers configuration parameter.

If nested triggers are enabled, a trigger that changes a table on which
there is another trigger fires the second trigger, which can in turn fire
a third trigger, and so forth. If any trigger in the chain sets off an
infinite loop, the nesting level is exceeded and the trigger aborts. You
can use nested triggers to perform useful housekeeping functions
such as storing a backup copy of rows affected by a previous trigger.

For example, you can create a trigger on titleauthor that saves a
backup copy of titleauthor rows that was deleted by the delcascadetrig
trigger. With the delcascadetrig trigger in effect, deleting the title_id
“PS2091” from titles also deletes the corresponding row(s) from



Transact-SQL User’s Guide 16-25

Adaptive Server Enterprise Release 11.5.x Nesting Triggers

titleauthor. To save the data, you can create a delete trigger on
titleauthor that saves the deleted data in another table, del_save:

create trigger savedel
on titleauthor
for delete
as
insert del_save
select * from deleted

It is not a good idea to use nested triggers in an order-dependent
sequence. Use separate triggers to cascade data modifications, as in
the earlier example of delcascadetrig, described under “Cascading
Delete Example” on page 16-11.

➤ Note
When you put triggers into a transaction, a failure at any level of a set of

nested triggers cancels the transaction and rolls back all data

modifications. Use print or raiserror statements in your triggers to determine

where failures occur.

A rollback transaction in a trigger at any nesting level rolls back the
effects of each trigger and cancels the entire transaction. A rollback
trigger affects only the nested triggers and the data modification
statement that caused the initial trigger to fire.

Trigger Self-Recursion

By default, a trigger does not call itself recursively. That is, an update
trigger does not call itself in response to a second update to the same
table within the trigger. If an update trigger on one column of a table
results in an update to another column, the update trigger fires only
once. However, you can turn on the self_recursion option of the set
command to allow triggers to call themselves recursively. The allow
nested triggers configuration variable must also be enabled for self-
recursion to occur.

The self_recursion setting remains in effect only for the duration of a
current client session. If the option is set as part of a trigger, its effect
is limited by the scope of the trigger that sets it. If the trigger that sets
self_recursion on returns or causes another trigger to fire, this option
reverts to off. Once a trigger turns on the self_recursion option, it can
repeatedly loop, if its own actions cause it to fire again, but it cannot
exceed the limit of 16 nesting levels.



16-26 Triggers: Enforcing Referential Integrity

Nesting Triggers Adaptive Server Enterprise Release 11.5.x

For example, assume that the following new_budget table exists in
pubs2:

select * from new_budget

unit            parent_unit     budget
--------------- --------------- -------
one_department  one_division    10
one_division    company_wide    100
company_wide    NULL            1000

(3 rows affected)

You can create a trigger that recursively updates new_budget
whenever its budget column is changed, as follows:

create trigger budget_change
on new_budget
for update as
if exists (select * from inserted
            where parent_unit is not null)
begin
    set self_recursion on
    update new_budget
    set new_budget.budget = new_budget.budget +
        inserted.budget - deleted.budget
    from inserted, deleted, new_budget
    where new_budget.unit = inserted.parent_unit
        and new_budget.unit = deleted.parent_unit
end

If you update new_budget.budget by increasing the budget of unit
one_department by 3, Adaptive Server behaves as follows (assuming
that nested triggers are enabled):

1. Increasing one_department from 10 to 13 fires the budget_change
trigger.

2. The trigger updates the budget of the parent of one_department
(in this case one_division) from 100 to 103, which fires the trigger
again.

3. The trigger updates the parent of one_division (in this case
company_wide) from 1000 to 1003, which causes the trigger to fire
for the third time.

4. The trigger attempts to update the parent of company_wide, but
since none exists (the value is “NULL”), the last update never
occurs and the trigger is not fired, ending the self-recursion. You
can query new_budget to see the final results, as follows:

select * from new_budget



Transact-SQL User’s Guide 16-27

Adaptive Server Enterprise Release 11.5.x Rules Associated with Triggers

unit            parent_unit     budget
--------------- --------------- -------
one_department  one_division    13
one_division    company_wide    103
company_wide    NULL            1003

(3 rows affected)

A trigger can also be recursively executed in other ways. A trigger
calls a stored procedure that performs actions that cause the trigger
to fire again (it is reactivated only if nested triggers are enabled).
Unless conditions within the trigger limit the number of recursions,
the nesting level can overflow.

For example, if an update trigger calls a stored procedure that
performs an update, the trigger and stored procedure execute only
once if nested triggers is set to off. If nested triggers is set to on, and the
number of updates exceeds 16 by some condition in the trigger or
procedure, the loop continues until the trigger or procedure exceeds
the 16-level maximum nesting value.

Rules Associated with Triggers

Apart from anticipating the effects of a multirow data modification,
trigger rollbacks, and trigger nesting, consider the following factors
when you are writing triggers.

Triggers and Permissions

A trigger is defined on a particular table. Only the owner of the table
has create trigger and drop trigger permissions for the table. These
permissions cannot be transferred to others.

Adaptive Server will accept a trigger definition that attempts actions
for which you do not have permission. The existence of such a trigger
aborts any attempt to modify the trigger table because incorrect
permissions will cause the trigger to fire and fail. The transaction will
be canceled. You must rectify the permissions or drop the trigger.

For example, Jose owns salesdetail and creates a trigger on it. The
trigger is supposed to update titles.total_sales when salesdetail.qty is
updated. However, Mary is the owner of titles, and has not granted
Jose permission on titles. When Jose tries to update salesdetail,
Adaptive Server detects the trigger and Jose’s lack of permissions on
titles, and rolls back the update transaction. Jose must either get



16-28 Triggers: Enforcing Referential Integrity

Rules Associated with Triggers Adaptive Server Enterprise Release 11.5.x

update permission on titles.total_sales from Mary or drop the trigger
on salesdetail.

Trigger Restrictions

Adaptive Server imposes the following limitations on triggers:

• A table can have a maximum of three triggers: one update trigger,
one insert trigger, and one delete trigger.

• Each trigger can apply to only one table. However, a single
trigger can apply to all three user actions: update, insert, and delete.

• You cannot create a trigger on a view or on a temporary table,
though triggers can reference views or temporary tables.

• The writetext statement will not activate insert or update triggers.

• Although a truncate table statement is, in effect, like a delete without
a where clause, because it removes all rows, it cannot fire a trigger,
because individual row deletions are not logged.

• You cannot create a trigger or build an index or a view on a
temporary object (@object)

• You cannot create triggers on system tables. If you try to create a
trigger on a system table, Adaptive Server returns an error
message and cancels the trigger.

• You cannot use triggers that select from a text column or an image
column of the inserted or deleted table.

• If Component Integration Services is enabled, triggers have
limited usefulness on proxy tables because you cannot examine
the rows being inserted, updated, or deleted (via the inserted and
deleted tables). You can create a trigger on a proxy table, and it can
be invoked. However, deleted or inserted data is not written to
the transaction log for proxy tables because the insert is passed to
the remote server. Hence, the inserted and deleted tables, which
are actually views to the transaction log, contain no data for
proxy tables.

Implicit and Explicit Null Values

The if update(column_name) clause is true for an insert statement
whenever the column is assigned a value in the select list or in the
values clause. An explicit NULL or a default assigns a value to a
column, and thus activates the trigger. An implicit NULL does not.



Transact-SQL User’s Guide 16-29

Adaptive Server Enterprise Release 11.5.x Rules Associated with Triggers

For example, suppose you create the following table:

create table junk
(a int null,
 b int not null)

and then write the following trigger:

create trigger junktrig
on junk
for insert
as
if update(a) and update(b)
        print "FIRING"

    /*"if update" is true for both columns.
      The trigger is activated.*/
insert junk (a, b) values (1, 2)

    /*"if update" is true for both columns.
      The trigger is activated.*/
insert junk values (1, 2)

    /*Explicit NULL:
      "if update" is true for both columns.
      The trigger is activated.*/
insert junk values (NULL, 2)

    /* If default exists on column a,
      "if update" is true for either column.
      The trigger is activated.*/
insert junk (b) values (2)

    /* If no default exists on column a,
      "if update" is not true for column a.
      The trigger is not activated.*/
insert junk (b) values (2)

The same results would be produced using only the clause:

if update(a)

To create a trigger that disallows the insertion of implicit nulls, you
can use:

if update(a) or update(b)

SQL statements in the trigger can then test to see if a or b is null.



16-30 Triggers: Enforcing Referential Integrity

Rules Associated with Triggers Adaptive Server Enterprise Release 11.5.x

Triggers and Performance

In terms of performance, trigger overhead is usually very low. The
time involved in running a trigger is spent mostly in referencing
other tables, which may be either in memory or on the database
device.

The deleted and inserted trigger test tables are always in active
memory. The location of other tables referenced by the trigger
determines the amount of time the operation takes.

For more information on how triggers affect performance, see the
Performance and Tuning Guide.

set Commands in Triggers

You can use the set command inside a trigger. The set option you
invoke remains in effect during execution of the trigger. Then, the
trigger reverts to its former setting.

Renaming and Triggers

If you change the name of an object referenced by a trigger, you must
drop the trigger and re-create it so that its source text reflects the new
name of the object being referenced. Use sp_depends to get a report of
the objects referenced by a trigger. The safest course of action is not
to rename any tables or views that are referenced by a trigger.

Trigger Tips

Consider the following tips when creating triggers:

• Suppose you have an insert or update trigger that calls a stored
procedure, which in turn updates the base table. If the nested
triggers configuration parameter is set to true, the trigger will enter
an infinite loop. Before executing an insert or update trigger, set
sp_configure “nested triggers” to false.

• When you execute drop table, any triggers dependent on that table
are also dropped. If you want to preserve any such triggers,
change their names with sp_rename before dropping the table.

• Use sp_depends to see a report on the tables and views referred to
in a trigger.

• Use sp_rename to rename a trigger.



Transact-SQL User’s Guide 16-31

Adaptive Server Enterprise Release 11.5.x Dropping Triggers

• A trigger fires only once per query (a single data modification
such as an insert or update). If the query is repeated in a loop, the
trigger fires as many times as the query is repeated.

Dropping Triggers

You can remove a trigger by dropping it or by dropping the trigger
table with which it is associated.

The drop trigger syntax is:

drop trigger [ owner .] trigger_name
[, [owner.] trigger_name ]...

When you drop a table, Adaptive Server drops any triggers
associated with it. drop trigger permission defaults to the trigger table
owner and is not transferable.

Getting Information About Triggers

As database objects, triggers are listed in sysobjects by name. The type
column of sysobjects identifies triggers with the abbreviation “TR”.
This query finds the triggers that exist in a database:

select *
from sysobjects
where type = "TR"

The source text for each trigger is stored in syscomments. Execution
plans for triggers are stored in sysprocedures. The system procedures
described in the following sections provide information from the
system tables about triggers.

sp_help

You can get a report on a trigger with the system procedure sp_help.
For example, you can get information on deltitle as follows:

sp_help deltitle

Name        Owner   Type
----------- ------- -----------
deltitle    dbo     trigger

Data_located_on_segment  When_created
-----------------------  -----------------
not applicable Jul 10 1997 3:56PM



16-32 Triggers: Enforcing Referential Integrity

Getting Information About Triggers Adaptive Server Enterprise Release 11.5.x

(return status = 0)

sp_helptext

To display the source text of a trigger, execute the system procedure
sp_helptext, as follows:

sp_helptext deltitle

# Lines of Text
---------------

1

text
---------------------------------------------

create trigger deltitle
on titles
for delete
as
if (select count(*) from deleted, salesdetail
where salesdetail.title_id = deleted.title_id) >0
begin

rollback transaction
print "You can’t delete a title with sales."

end

If the source text of a trigger was encrypted using sp_hidetext,
Adaptive Server displays a message advising you that the text is
hidden. For information about hiding source text, see sp_hidetext in
the Adaptive Server Reference Manual.

If the System Security Officer has reset the allow select on
syscomments.text column parameter with the system procedure
sp_configure (as required to run Adaptive Server in the evaluated
configuration), you must be the creator of the trigger or a System
Administrator to view the source text of a trigger through sp_helptext.
(See evaluated configuration in the Adaptive Server Glossary for more
information.)

sp_depends

The system procedure sp_depends lists the triggers that reference an
object or all the tables or views that the trigger affects. This example
shows how to use sp_depends to get a list of all the objects referenced
by the trigger deltitle:



Transact-SQL User’s Guide 16-33

Adaptive Server Enterprise Release 11.5.x Getting Information About Triggers

sp_depends deltitle

Things the object references in the current
database.

object              type       updated  selected
----------------    ----------  ------- --------
dbo.salesdetail     user table  no      no
dbo.titles          user table  no      no

(return status = 0)

This statement lists all the objects that reference the salesdetail table:

sp_depends salesdetail

Things inside the current database that reference
the object.

object                       type
---------------------------  ----------------
dbo.deltitle                 trigger
dbo.history_proc             stored procedure
dbo.insert_salesdetail_proc  stored procedure
dbo.totalsales_trig          trigger

(return status = 0)



16-34 Triggers: Enforcing Referential Integrity

Getting Information About Triggers Adaptive Server Enterprise Release 11.5.x



Transact-SQL User’s Guide 17-1

17 Cursors: Accessing Data
Row by Row 17.

A cursor accesses the results of a SQL select statement one or more
rows at a time. Cursors allow you to modify or delete rows on an
individual basis.

This chapter discusses:

• How Cursors Work   17-1

• Declaring Cursors   17-5

• Opening Cursors   17-12

• Fetching Data Rows Using Cursors   17-13

• Updating and Deleting Rows Using Cursors   17-16

• Closing and Deallocating Cursors   17-19

• An Example Using a Cursor   17-19

• Using Cursors in Stored Procedures   17-22

• Cursors and Locking   17-24

• Getting Information About Cursors   17-25

• Using Browse Mode in Place of Cursors   17-26

For information on how cursors affect performance, see Chapter 12,
“Cursors and Performance,” in the Performance and Tuning Guide.

How Cursors Work

A cursor is a symbolic name that is associated with a select statement.
It consists of the following parts:

• Cursor result set – the set (table) of rows resulting from the
execution of a query that is associated with the cursor

• Cursor position – a pointer to one row within the cursor result set

The cursor position indicates the current row of the cursor. You can
explicitly modify or delete that row using update or delete statements
with a clause naming the cursor.

You can change the current cursor position through an operation
called a fetch. The fetch command moves the current cursor position
one or more rows down the cursor result set.



17-2 Cursors: Accessing Data Row by Row

How Cursors Work Adaptive Server Enterprise Release 11.5.x

Figure 17-1 illustrates how the cursor result set and cursor position
work when a fetch command is performed. In this example, the
cursor is defined as follows:

declare cal_authors_crsr cursor
for select au_id, au_lname, au_fname
from authors
where state = "CA"
for update

Figure 17-1: How the cursor result set and cursor position work for a fetch

You might think of a cursor as a “handle” on the result set of a select
statement. It enables you to examine and possibly manipulate one
row at a time. However, cursors support only forward (or sequential)
movement through the query results. Once you fetch several rows,
you cannot backtrack through the cursor result set to access them
again. This process allows you to traverse the query results row by
row.

How Adaptive Server Processes Cursors

Figure 17-2 shows the steps involved in using cursors. The whole
point of cursors is to get to the middle box, where the user examines
a row and, based on its values, decides what to do.

172-32-1176 White Johnson

213-46-8915 Green Marjorie

… … …

cal_authors_crsr cursor result set from the authors table

Cursor position when fetch is performed

Next cursor position



Transact-SQL User’s Guide 17-3

Adaptive Server Enterprise Release 11.5.x How Cursors Work

Figure 17-2: Steps for using cursors

When accessing data using cursors, Adaptive Server divides the
process into the following operations:

• Declaring the cursor

Adaptive Server creates the cursor structure and compiles the
query defined for that cursor. It stores the compiled query plan
but does not execute it.

For example, the following cursor declaration, business_crsr,
finds the titles and identification numbers of all business books
in the titles table. It also allows you to update the price column in
the future through the cursor:

declare business_crsr cursor
for select title, title_id
from titles
where type = "business"
for update of price

Be sure to use the for update clause when declaring a cursor, to
ensure that Adaptive Server performs the positioned updates
correctly.

Declare cursor

Open cursor

Fetch row

Process row
(Examine/Update/Delete)

No

Yes

Close cursor

Deallocate cursor

Get next
row?



17-4 Cursors: Accessing Data Row by Row

How Cursors Work Adaptive Server Enterprise Release 11.5.x

• Opening the cursor

Opening the cursor executes a query plan, which determines
how Adaptive Server reads or updates the cursor. For example:

open business_crsr

Adaptive Server performs a scan, just like a normal select.
Depending on the type of query defined in the cursor, Adaptive
Server begins to create the cursor result set by scanning either
the base table to perform the fetch or by creating a worktable.
Adaptive Server then allocates resources (such as memory) to
support the cursor structure.

• Fetching from the cursor

The fetch command completes the cursor result set and retrieves
the first (or next) valid row from the table defined in the cursor.
Adaptive Server moves the cursor position one or more rows
down the cursor result set. If the table has a valid index,
Adaptive Server uses it to cursor down each row. It retrieves the
data from each row of the result set and stores the current
position, allowing further fetches until it reaches the end of the
result set.

For example, the following fetch command displays the title and
identification number of the first row in the titles table
containing a business book:

fetch business_crsr

title                                 title_id
-----------------------------------   --------
The Busy Executive's Database Guide   BU1032

(1 row affected)

Running fetch business_crsr a second time displays the title and
identification number of the next business book in titles. All
cursor fetch operations are accomplished using the current cursor
position.

• Processing the row by examining, updating, or deleting it
through the cursor

Adaptive Server updates or deletes the data in the cursor result
set (and corresponding base tables that derived the data) at the
current cursor position after a fetch. This operation is optional.

The following update statement raises the price of business books
by 5 percent; it affects only the book currently pointed to by the
business_crsr cursor:



Transact-SQL User’s Guide 17-5

Adaptive Server Enterprise Release 11.5.x Declaring Cursors

update titles
set price = price * .05 + price
where current of business_crsr

Updating a cursor row involves changing data in the row or
deleting the row completely. You cannot use cursors to insert
rows. All updates through a cursor affect the corresponding base
tables included in the cursor result set.

• Closing the cursor

Adaptive Server closes the cursor result set, removes any
remaining temporary tables, and releases the server resources
held for the cursor structure. However, it keeps the query plan
for the cursor so that it can be opened again. For example:

close business_crsr

When you close a cursor and then reopen it, Adaptive Server is
ready to re-create the cursor result set. When you perform the
fetch, Adaptive Server positions the cursor before the first valid
row. This allows you to process a cursor result set as many times
as necessary. You can close the cursor at any time; you do not
have to go through the entire result set.

• Deallocating the cursor

Adaptive Server dumps the query plan from memory and
eliminates all trace of the cursor structure. For example:

deallocate cursor business_crsr

You must declare the cursor again before using it.

Declaring Cursors

You must declare a cursor before you can use it. The declaration
specifies the query that defines the cursor result set. You can
explicitly define a cursor as updatable or read-only by using the for
update or for read only keywords. If you omit either one, Adaptive
Server determines whether the cursor is updatable based on the type
of query that defines the cursor result set. However, it is a good idea
to explicitly specify one or the other; for updates, this ensures that
Adaptive Server performs the positioned updates correctly. You
cannot use the update or delete statements on the result set of a read-
only cursor.



17-6 Cursors: Accessing Data Row by Row

Declaring Cursors Adaptive Server Enterprise Release 11.5.x

declare cursor Syntax

The syntax of the declare cursor statement is:

declare cursor_name  cursor
for select_statement
[for {read only | update [of column_name_list ]}]

The cursor_name is the name of the cursor. It must be a valid Adaptive
Server identifier containing no more than 30 characters, and it must
start with a letter, a pound sign (#), or an underscore (_).

The select_statement is the query that defines the cursor result set. See
select in the Adaptive Server Reference Manual for information about its
options. In general, select_statement may use the full syntax and
semantics of a Transact-SQL select statement, including the holdlock
keyword. However, it cannot contain a compute, for browse, or into
clause.

The for read only option specifies that the cursor result set cannot be
updated. In contrast, the for update option specifies that the cursor
result set is updatable. You can specify of column_name_list after for
update with the list of columns from the select_statement defined as
updatable.

The declare cursor statement must precede any open statement for that
cursor. You cannot combine declare cursor with other statements in the
same Transact-SQL batch, except when using a cursor in a stored
procedure.

For example, the following declare cursor statement defines a result set
for the authors_crsr cursor that contains all authors that do not reside
in California:

declare authors_crsr cursor
for select au_id, au_lname, au_fname
from authors
where state != "CA"
for update

The select_statement can contain references to Transact-SQL
parameter names or local variables. However, the names can
reference only the parameters and local variables defined in a stored
procedure that contains the declare cursor statement. If the cursor is
used in a trigger, the select_statement can also reference the inserted
and deleted temporary tables that are used in triggers. For
information on using the select statement, see Chapter 2, “Queries:
Selecting Data from a Table.”



Transact-SQL User’s Guide 17-7

Adaptive Server Enterprise Release 11.5.x Declaring Cursors

Types of Cursors

There are four types of cursors:

• Client cursors – are declared through Open Client calls (or
Embedded SQL). Open Client keeps track of the rows returned
from Adaptive Server and buffers them for the application.
Updates and deletes to the result set of client cursors can be done
only through the Open Client calls.

• Execute cursors – are a subset of client cursors whose result set is
defined by a stored procedure. The stored procedure can use
parameters. The values of the parameters are sent through Open
Client calls.

• Server cursors – are declared in SQL. If they are used in stored
procedures, the client executing the stored procedure is not aware
of them. Results returned to the client for a fetch are the same as
the results from a normal select.

• Language cursors – are declared in SQL without using Open
Client. As with server cursors, the client is not aware of the
cursors, and the results are returned to the client in the same
format as a normal select.

Client cursors, through the use of applications using Open Client
calls or Embedded-SQL, are the most frequently used form of
cursors. To simplify the discussion of cursors, the examples in this
manual are for language and server cursors only. For examples of
client or execute cursors, see your Open Client or Embedded-SQL
documentation.

Cursor Scope

A cursor’s existence depends on its scope. The scope refers to the
context in which the cursor is used: within a user session, a stored
procedure, or a trigger.

Within a user session, the cursor exists only until the user ends the
session. The cursor does not exist for any additional sessions that
other users start. After the user logs off, Adaptive Server deallocates
the cursors created in that session.

If a declare cursor statement is part of a stored procedure or trigger, the
cursor created within it applies to that scope and to the scope that
launched the stored procedure or trigger. However, cursors declared
inside a trigger on an inserted or a deleted table are not accessible to
any nested stored procedures or triggers. Such cursors are accessible



17-8 Cursors: Accessing Data Row by Row

Declaring Cursors Adaptive Server Enterprise Release 11.5.x

within the scope of that trigger. Once the stored procedure or trigger
completes, Adaptive Server deallocates the cursors created within it.

Figure 17-3 illustrates how cursors operate between scopes.

Figure 17-3: How cursors operate within scopes

A cursor name must be unique within a given scope. Adaptive
Server detects name conflicts within a particular scope only during
run time. A stored procedure or trigger can define two cursors with
the same name if only one is executed. For example, the following
stored procedure works because only one names_crsr cursor is
defined in its scope:

create procedure proc2 @flag int
as
if @flag > 0
    declare names_crsr cursor
    for select au_fname from authors
else
    declare names_crsr cursor
    for select au_lname from authors
return

➀ User Session

declare cursor c1
go
exec sp_proc1 ➁ Within proc1

Can access cursor c1 from
User Session

declare cursor c2
go
update command
fires trigger1

➃ User Session

Can access cursor c1, but not
cursor c2 or c3, since they no
longer exist

➂ Within trigger1

Can access cursor c2 from
proc1 and cursor c1 from
User Session

declare cursor c3
go
exit trigger1 back to User
Session (Scope 1)



Transact-SQL User’s Guide 17-9

Adaptive Server Enterprise Release 11.5.x Declaring Cursors

Cursor Scans and the Cursor Result Set

The method Adaptive Server uses to create the cursor result set
depends on the type of query used. If the query does not require a
worktable, Adaptive Server performs a fetch by cursoring down the
base table using the table’s index keys, much like a select statement,
except that it returns the number of rows specified by the fetch. After
the fetch, Adaptive Server positions the cursor at the next valid index
key, until you fetch again or close the cursor.

Some queries use worktables to generate the cursor result set. To
verify whether a particular cursor uses a worktable, check the output
of a set showplan, no exec on statement.

Be aware that when a worktable is used, the rows retrieved with a
cursor fetch statement may not reflect the values in the actual base
table rows. For example, a cursor declared with an order by clause
usually requires the creation of a worktable to order the rows for the
cursor result set. Adaptive Server does not lock the rows in the base
table that correspond to the rows in the worktable, which permits
other clients to update these base table rows. Hence, the rows
returned to the client from the cursor statement are different from the
base table rows. See “Cursors and Locking” on page 17-24 for more
information on how locks work with cursors.

A cursor result set is generated as the rows are returned through a
fetch of that cursor. This means that a cursor select query is processed
like a normal select query. This process, known as cursor scans,
provides a faster turnaround time and eliminates the need to read
rows the application does not require.

Adaptive Server requires that cursor scans use a unique index of a
table, particularly for isolation level 0 reads. If the table has an
IDENTITY column and you need to create a nonunique index on it,
use the identity in nonunique index database option to include an
IDENTITY column in the table’s index keys so that all indexes
created on the table are unique. This database option makes logically
nonunique indexes internally unique and allows the indexes to be
used to process updatable cursors for isolation level 0 reads.

You can still use cursors that reference tables without indexes, if none
of those tables are updated by another process that causes the current
row position to move. For example:

declare storinfo_crsr cursor
for select stor_id, stor_name, payterms
    from stores
    where state = "CA"



17-10 Cursors: Accessing Data Row by Row

Declaring Cursors Adaptive Server Enterprise Release 11.5.x

The table stores, specified with the above cursor, does not have any
indexes. Adaptive Server allows the declaration of cursors on tables
without unique indexes, as long as you have not specified for update in
the declare cursor statement. If an update does not change the position of
the row, the cursor position does not change until the next fetch.

Making Cursors Updatable

You can update or delete a row returned by a cursor if the cursor is
updatable. If the cursor is read-only, you can only read the data; you
cannot update or delete it. By default, Adaptive Server attempts to
determine whether a cursor is updatable before designating it as
read-only.

You can explicitly specify whether a cursor is updatable by using the
read only or update keywords in the declare statement. Specifying a
cursor to be updatable ensures that Adaptive Server performs the
positioned updates correctly. Make sure the table being updated has
a unique index. If it does not, Adaptive Server rejects the declare cursor
statement.

The following example defines an updatable result set for the
pubs_crsr cursor:

declare pubs_crsr cursor
for select pub_name, city, state
from publishers
for update of city, state

The above example includes all the rows from the publishers table,
but it explicitly defines only the city and state columns for update.

Unless you plan to update or delete rows through a cursor, you
should declare a cursor as read-only. If you do not explicitly specify
read only or update, the cursor is implicitly updatable when the select
statement does not contain any of the following constructs:

• distinct option

• group by clause

• Aggregate function

• Subquery

• union operator

• at isolation read uncommitted clause

You cannot specify the for update clause if a cursor’s select_statement
contains one of the above constructs. Adaptive Server also defines a



Transact-SQL User’s Guide 17-11

Adaptive Server Enterprise Release 11.5.x Declaring Cursors

cursor as read-only if you declare certain types of cursors that
include an order by clause as part of their select_statement. See “Types
of Cursors” on page 17-7 for information on the types of cursors
Adaptive Server supports.

Determining Which Columns Can Be Updated

If you do not specify a column_name_list with the for update clause, all
the specified columns in the query are updatable. Adaptive Server
attempts to use unique indexes for updatable cursors when scanning
the base table. For cursors, Adaptive Server considers an index
containing an IDENTITY column to be unique, even if it is not so
declared.

Adaptive Server allows you to update columns in the
column_name_list that are not specified in the list of columns of the
cursor’s select_statement, but that are part of the tables specified in the
select_statement. However, when you specify a column_name_list with
for update, you can update only the columns in that list.

In the following example, Adaptive Server uses the unique index on
the pub_id column of publishers (even though pub_id is not included in
the definition of newpubs_crsr):

declare newpubs_crsr cursor
for select pub_name, city, state
from publishers
for update

If you do not specify the for update clause, Adaptive Server chooses
any unique index, although it can also use other indexes or table
scans if no unique index exists for the specified table columns.
However, when you specify the for update clause, Adaptive Server
must use a unique index defined for one or more of the columns to
scan the base table. If no unique index exists, Adaptive Server
returns an error message.

In most cases, you should include only columns to be updated in the
column_name_list of the for update clause. If the table has only one
unique index, you do not need to include its column in the for update
column_name_list; Adaptive Server will find it when it performs the
cursor scan. If the table has more than one unique index, you should
include its column in the for update column_name_list, so that Adaptive
Server can find it quickly for the cursor scan. For example, the table
used in the following declare cursor statement has one unique index,
on the column c3, so that column should not be included in the for
update list:



17-12 Cursors: Accessing Data Row by Row

Opening Cursors Adaptive Server Enterprise Release 11.5.x

declare mycursor cursor
for select c1, c2, 3
from mytable
for update of c1, c2

However, if mytable has more than one unique index, for example, on
columns c3 and c4, you need to specify one unique index in the for
update clause as follows:

declare mycursor cursor
for select c1, c2, 3
from mytable
for update of c1, c2, c3

Allowing Adaptive Server to use the unique index in the cursor scan
in this manner helps to prevent an update anomaly called the
Halloween problem. Another way to avoid the Halloween problem
is to create tables with the unique auto_identity index database option set
to on. See the unique auto_identity index database option description in
the System Administration Guide for more information.

The Halloween problem occurs when a client updates a column
through a cursor, and that column defines the order in which the
rows are returned from the base tables (that is, a unique indexed
column). For example, if Adaptive Server accesses a base table using
an index, and the index key is updated by the client, the updated
index row can move within the index and be read again by the
cursor. The row seems to appear twice in the result set: when the
index key is updated by the client and when the updated index row
moves farther down the result set.

Opening Cursors

After you declare a cursor, you must open it to fetch, update, or delete
rows. Opening a cursor lets Adaptive Server begin to create the
cursor result set by evaluating the select statement that defines the
cursor and makes it available for processing. The syntax for the open
statement is:

open cursor_name

Adaptive Server does not allow you to open a cursor if it is already
open or if the cursor has not been defined with the declare cursor
statement. You can reopen a closed cursor to reset the cursor position
to the beginning of the cursor result set.



Transact-SQL User’s Guide 17-13

Adaptive Server Enterprise Release 11.5.x Fetching Data Rows Using Cursors

Fetching Data Rows Using Cursors

A fetch completes the cursor result set and returns one or more rows
to the client that is responsible for extracting the column data from
the row. Depending on the type of query defined in the cursor,
Adaptive Server creates the cursor result set either by scanning the
tables directly or by scanning a worktable generated by the query
type.

The fetch command positions the cursor before the first row of the
cursor result set. If the table has a valid index, Adaptive Server
positions the cursor at the first index key.

Optionally, you can include Transact-SQL parameters or local
variables with fetch to store column values.

fetch Syntax

The syntax for the fetch statement is:

fetch cursor_name  [into fetch_target_list ]

After generating the cursor result set, Adaptive Server moves the
cursor position one or more rows down the result set. It retrieves the
data from each row of the result set and stores the current position,
allowing additional fetches until Adaptive Server reaches the end of
the result set.

For example, after declaring and opening the authors_crsr cursor, you
can fetch the first row of its result set as follows:

fetch authors_crsr

au_id        au_lname            au_fname
-----------  ------------------- ---------------
341-22-1782  Smith              Meander

(1 row affected)

Each subsequent fetch retrieves another row from the cursor result
set. For example:

fetch authors_crsr

au_id       au_lname            au_fname
----------- ------------------- ---------------
527-72-3246 Greene Morningstar

(1 row affected)



17-14 Cursors: Accessing Data Row by Row

Fetching Data Rows Using Cursors Adaptive Server Enterprise Release 11.5.x

After you fetch all the rows, the cursor points to the last row of the
result set. If you fetch again, Adaptive Server returns a warning
through the @@sqlstatus variable (described under “Checking the
Cursor Status” on page 17-14) indicating there is no more data. The
cursor position remains unchanged.

You cannot fetch a row that has already been fetched. There is no way
to backtrack through a cursor result set. Close and reopen the cursor
to generate the cursor result set again and start fetching from the
beginning.

The into clause specifies that Adaptive Server returns column data
into the specified variables. The fetch_target_list must consist of
previously declared Transact-SQL parameters or local variables.

For example, after declaring the @name, @city, and @state variables,
you can fetch rows from the pubs_crsr cursor as follows:

fetch pubs_crsr into @name, @city, @state

Adaptive Server expects a one-to-one correspondence between the
variables in the fetch_target_list and the target list expressions
specified by the select_statement that defines the cursor. The
datatypes of the variables or parameters must be compatible with the
datatypes of the columns in the cursor result set.

Checking the Cursor Status

Adaptive Server returns a status value after each fetch. You can
access the value through the global variable @@sqlstatus. The
following table lists possible @@sqlstatus values and their meanings:

The following example determines the @@sqlstatus for the currently
open authors_crsr cursor:

select @@sqlstatus

Table 17-1: @@sqlstatus values

Value Meaning

0 Indicates successful completion of the fetch statement.

1 Indicates that the fetch statement resulted in an error.

2 Indicates that there is no more data in the result set. This warning
can occur if the current cursor position is on the last row in the
result set and the client submits a fetch statement for that cursor.



Transact-SQL User’s Guide 17-15

Adaptive Server Enterprise Release 11.5.x Fetching Data Rows Using Cursors

---------
0

(1 row affected)

Only a fetch statement can set @@sqlstatus. Other statements have no
effect on @@sqlstatus.

Getting Multiple Rows with Each fetch

By default, the fetch command retrieves only one row at a time. You
can use the cursor rows option of the set command to change the
number of rows that are returned by fetch. However, this option does
not affect a fetch containing an into clause.

The syntax for set is:

set cursor rows number  for cursor_name

where number specifies the number of rows for the cursor. The
number can be a numeric literal with no decimal point or a local
variable of type integer. The default setting is 1 for each cursor you
declare. You can set the cursor rows option for any cursor whether it is
open or closed.

For example, you can change the number of rows fetched for the
authors_crsr cursor as follows:

set cursor rows 3 for authors_crsr

After you set the number of cursor rows, each fetch of authors_crsr
returns three rows from the cursor result set:

fetch authors_crsr

au_id       au_lname            au_fname
----------- ------------------- ---------------
648-92-1872 Blotchet-Halls      Reginald
712-45-1867 del Castillo        Innes
722-51-5424 DeFrance            Michel

(3 rows affected)

The cursor is positioned on the last row fetched (the author Michel
DeFrance in the above example).

Fetching several rows at a time works especially well for client
applications. If you fetch more than one row, Open Client or
Embedded SQL buffers the rows sent to the client application. The
client still sees a row-by-row access, but each fetch results in fewer
calls to Adaptive Server, which improves performance.



17-16 Cursors: Accessing Data Row by Row

Updating and Deleting Rows Using Cursors Adaptive Server Enterprise Release 11.5.x

Checking the Number of Rows Fetched

Use the @@rowcount global variable to monitor the number of rows
of the cursor result set returned to the client up to the last fetch. This
variable displays the total number of rows seen by the cursor at any
one time.

Once all the rows are read from a cursor result set, @@rowcount
represents the total number of rows in that result set. Each open
cursor is associated with a specific @@rowcount variable. The variable
is dropped when you close the cursor. Checking @@rowcount after a
fetch provides you with the number of rows read for the cursor
specified in that fetch.

The following example determines the @@rowcount for the currently
open authors_crsr cursor:

select @@rowcount

---------
5

(1 row affected)

Updating and Deleting Rows Using Cursors

If the cursor is updatable, use the update or delete statement to update
or delete rows. Adaptive Server determines whether the cursor is
updatable by checking the select_statement that defines the cursor.
You can also explicitly define a cursor as updatable with the for update
clause of the declare cursor statement. See “Making Cursors
Updatable” on page 17-10 for more information.

Updating Cursor Result Set Rows

You can use the where current of clause of the update statement to update
the row at the current cursor position. Any update to the cursor
result set also affects the base table row from which the cursor row is
derived.



Transact-SQL User’s Guide 17-17

Adaptive Server Enterprise Release 11.5.x Updating and Deleting Rows Using Cursors

The syntax for update...where current of is:

update [[ database .] owner .]{ table_name  | view_name }
set [[[ database .] owner .]{ table_name .| view_name .}]
    column_name1  =
       { expression1 |NULL|( select_statement )}
    [, column_name2  =
       { expression2 |NULL|( select_statement )}]...
where current of cursor_name

The set clause specifies the cursor’s result set column name and
assigns the new value. When more than one column name and value
pair is listed, you must separate them with commas.

The table_name or view_name must be the table or view specified in
the first from clause of the select statement that defines the cursor. If
that from clause references more than one table or view (using a join),
you can specify only the table or view actually being updated.

For example, you can update the row that the pubs_crsr cursor
currently points to as follows:

update publishers
set city = "Pasadena",
    state = "CA"
where current of pubs_crsr

After the update, the cursor position remains unchanged. You can
continue to update the row at that cursor position, as long as another
SQL statement does not move the position of that cursor.

Adaptive Server allows you to update columns that are not specified
in the list of columns of the cursor’s select_statement, but are part of
the tables specified in that statement. However, when you specify a
column_name_list with for update, you can update only the columns in
that list.

Deleting Cursor Result Set Rows

Using the where current of clause of the delete statement, you can delete
the row at the current cursor position. When you delete a row from
the cursor’s result set, the row is deleted from the underlying
database table. You can delete only one row at a time using the
cursor.

The syntax for delete...where current of is:

delete [from]
[[ database .] owner .]{ table_name | view_name }
where current of cursor_name



17-18 Cursors: Accessing Data Row by Row

Updating and Deleting Rows Using Cursors Adaptive Server Enterprise Release 11.5.x

The table_name or view_name specified with a delete...where current of
must be the table or view specified in the first from clause of the select
statement that defines the cursor.

For example, you can delete the row that the authors_crsr cursor
currently points to as follows:

delete from authors
where current of authors_crsr

The from keyword in the above example is optional.

➤ Note
You cannot delete a row from a cursor defined by a select statement

containing a join, even if the cursor is updatable.

After you delete a row from a cursor, Adaptive Server positions the
cursor before the row following the deleted row in the cursor result
set. You must still use fetch to access that next row. If the deleted row
is the last row in the cursor result set, Adaptive Server positions the
cursor after the last row of the result set.

 For example, after deleting the current row in the above example
(the author Michel DeFrance), you can fetch the next three authors in
the cursor result set (assuming that cursor rows is still set to 3):

fetch authors_crsr

au_id        au_lname            au_fname
-----------  ------------------- ---------------
807-91-6654  Panteley            Sylvia
899-46-2035  Ringer              Anne
998-72-3567  Ringer              Albert

(3 rows affected)

You can, of course, delete a row from the base table without referring
to a cursor. The cursor result set changes as changes are made to the
base table.



Transact-SQL User’s Guide 17-19

Adaptive Server Enterprise Release 11.5.x Closing and Deallocating Cursors

Closing and Deallocating Cursors

When you are finished with the result set of a cursor, you can close it.
The syntax for closing a cursor is:

close cursor_name

Closing the cursor does not change its definition. You can open the
cursor again, and Adaptive Server will create a new cursor result set
using the same query as before. For example:

close authors_crsr

open authors_crsr

You can then fetch from authors_crsr, starting from the beginning of
its cursor result set. Any conditions associated with that cursor (such
as the number of rows fetched defined by set cursor rows) remain in
effect.

For example:

fetch authors_crsr

au_id       au_lname            au_fname
----------- ------------------- ---------------
341-22-1782 Smith               Meander
527-72-3246 Greene              Morningstar
648-92-1872 Blotchet-Halls      Reginald

(3 rows affected)

If you want to discard the cursor, you must deallocate it. The syntax
for the deallocate cursor statement is:

deallocate cursor cursor_name

Deallocating a cursor frees up any resources associated with the
cursor, including the cursor name. You cannot reuse a cursor name
until you deallocate it. If you deallocate an open cursor, Adaptive
Server automatically closes it. Terminating a client connection to a
server also closes and deallocates any open cursors.

An Example Using a Cursor

The following cursor example uses this query:

select author = au_fname + " " + au_lname, au_id
from authors



17-20 Cursors: Accessing Data Row by Row

An Example Using a Cursor Adaptive Server Enterprise Release 11.5.x

The results of the query are

author                      au_id
-------------------------   -----------
Johnson White               172-32-1176
Marjorie Green              213-46-8915
Cheryl Carson               238-95-7766
Michael O'Leary             267-41-2394
Dick Straight               274-80-9391
Meander Smith               341-22-1782
Abraham Bennet              409-56-7008
Ann Dull                    427-17-2319
Burt Gringlesby             472-27-2349
Chastity Locksley           486-29-1786
Morningstar Greene          527-72-3246
Reginald Blotchet Halls     648-92-1872
Akiko Yokomoto              672-71-3249
Innes del Castillo          712-45-1867
Michel DeFrance             722-51-5454
Dirk Stringer               724-08-9931
Stearns MacFeather          724-80-9391
Livia Karsen                756-30-7391
Sylvia Panteley             807-91-6654
Sheryl Hunter               846-92-7186
Heather McBadden            893-72-1158
Anne Ringer                 899-46-2035
Albert Ringer  998-72-3567

(23 rows affected)

The following steps show how to use a cursor with the above query:

1. Declare the cursor.

This declare cursor statement defines a cursor using the select
statement shown above:

declare newauthors_crsr cursor for
select author = au_fname + " " + au_lname, au_id
from authors
for update

2. Open the cursor:

open newauthors_crsr

3. Fetch rows using the cursor:

fetch newauthors_crsr



Transact-SQL User’s Guide 17-21

Adaptive Server Enterprise Release 11.5.x An Example Using a Cursor

author                      au_id
-------------------------   -----------
Johnson White 172-32-1176

(1 row affected)

You can fetch more than one row at a time by specifying the
number of rows with the set command:

set cursor rows 5 for newauthors_crsr
go
fetch newauthors_crsr

author                      au_id
-------------------------   -----------
Marjorie Green              213-46-8915
Cheryl Carson               238-95-7766
Michael O'Leary             267-41-2394
Dick Straight               274-80-9391
Meander Smith               341-22-1782

(5 rows affected)

Each subsequent fetch brings back five more rows:

fetch newauthors_crsr

author                      au_id
-------------------------   -----------
Abraham Bennet              409-56-7008
Ann Dull                    427-17-2319
Burt Gringlesby             472-27-2349
Chastity Locksley           486-29-1786
Morningstar Greene          527-72-3246

(5 rows affected)

The cursor is now positioned at author Morningstar Greene, the
last row of the current fetch.

4. Perform the following update for Ms. Greene, who has become
weary of New Age jokes about her name:

update authors
set au_fname = "Voilet"
where current of newauthors_crsr

The cursor remains at Ms. Greene’s record until the next fetch.

5. Once you are finished with the cursor, you can close it:

close newauthors_crsr



17-22 Cursors: Accessing Data Row by Row

Using Cursors in Stored Procedures Adaptive Server Enterprise Release 11.5.x

Closing the cursor releases the result set, but the cursor is still
defined. If you open the cursor again, Adaptive Server reruns the
query and places the cursor before the first row in the result set.
The cursor is still set to return five rows with each fetch.

6. Use the deallocate command to make the cursor undefined:

deallocate cursor newauthors_crsr

You cannot reuse the cursor name until you deallocate it.

Using Cursors in Stored Procedures

Cursors are particularly useful in stored procedures. They allow you
to use only one query to accomplish a task that would otherwise
require several queries. However, all cursor operations must execute
within a single procedure. A stored procedure cannot open, fetch, or
close a cursor that was not declared in the procedure. The cursor is
undefined outside of the scope of the stored procedure. (See “Cursor
Scope” on page 17-7 for how cursors work within a scope.)

For example, the following stored procedure au_sales checks the sales
table to see if any books by a particular author have sold well. It uses
a cursor to examine each row, and then prints the information.
Without the cursor, it would need several select statements to
accomplish the same task. Note that outside stored procedures, you
cannot include other statements with declare cursor in the same batch.

create procedure au_sales (@author_id id)
as

/* declare local variables used for fetch */
declare @title_id tid
declare @title varchar(80)
declare @ytd_sales int
declare @msg varchar(120)

/* declare the cursor to get each book written
    by given author */
declare author_sales cursor for
select ta.title_id, t.title, t.total_sales
from titleauthor ta, titles t
where ta.title_id = t.title_id
and ta.au_id = @author_id

open author_sales



Transact-SQL User’s Guide 17-23

Adaptive Server Enterprise Release 11.5.x Using Cursors in Stored Procedures

fetch author_sales
        into @title_id, @title, @ytd_sales

if (@@sqlstatus = 2)
begin
    print "We do not sell books by this author."
    close author_sales
    return
end

/* if cursor result set is not empty, then process
    each row of information */
while (@@sqlstatus = 0)
begin
    if (@ytd_sales = NULL)
    begin
        select @msg = @title +
           " -- Had no sales this year."
        print @msg
    end
    else if (@ytd_sales < 500)
    begin
        select @msg = @title +
            " -- Had poor sales this year."
        print @msg
    end
    else if (@ytd_sales < 1000)
    begin
        select @msg = @title +
            " -- Had mediocre sales this year."
        print @msg
    end
    else
    begin
        select @msg = @title +
            " -- Had good sales this year."
        print @msg
    end

    fetch author_sales into @title_id, @title,
    @ytd_sales
end

For example:

au_sales "172-32-1176"



17-24 Cursors: Accessing Data Row by Row

Cursors and Locking Adaptive Server Enterprise Release 11.5.x

Prolonged Data Deprivation: Four Case Studies -- Had good sales this
year.

(return status = 0)

For more information about stored procedures, see Chapter 14,
“Using Stored Procedures.” See also Chapter 12, “Cursors and
Performance,” in the Performance and Tuning Guide for information
about how stored procedures that use cursors affect performance.

Cursors and Locking

Cursor locking methods are similar to other locking methods for
Adaptive Server. In general, statements that read data (such as select
or readtext) use shared locks on each data page to avoid reading
changed data from an uncommitted transaction. Update statements
use exclusive locks on each page they change. To reduce deadlocks
and improve concurrency, Adaptive Server often precedes an
exclusive lock with an update lock, which indicates that the client
intends to change data on the page.

For updatable cursors, Adaptive Server uses update locks by default
when scanning tables or views referenced with the for update clause of
declare cursor. If the for update clause is included, but the list is empty, all
tables and views referenced in the from clause of the select_statement
receive update locks by default. If the for update clause is not included,
the referenced tables and views receive shared locks. You can instruct
Adaptive Server to use shared locks instead of update locks by
adding the shared keyword to the from clause. Specifically, you should
add shared after each table name for which you prefer a shared lock.

➤ Note
Adaptive Server releases an update lock when the cursor position moves

off the data page. Since an application buffers rows for client cursors, the

corresponding server cursor may be positioned on a different data row and

page than the client cursor. In this case, a second client could update the

row that represents the current cursor position of the first client, even if the

first client used the for update option.

Any exclusive locks acquired by a cursor in a transaction are held
until the end of that transaction. This also applies to shared or update
locks when you use the holdlock keyword or the set isolation level 3
option. However, if you do not set the close on endtran option, the
cursor remains open past the end of the transaction, and its current



Transact-SQL User’s Guide 17-25

Adaptive Server Enterprise Release 11.5.x Getting Information About Cursors

page lock remains in effect. It can also continue to acquire locks as it
fetches additional rows.

For more information about cursor locking in Adaptive Server, see
the Performance and Tuning Guide.

Cursor Locking Options

These are the effects of specifying the holdlock or shared options (of the
select statement) when you define an updatable cursor:

• If you omit both options, you can read data on the currently
fetched pages only. Other users cannot update your currently
fetched pages, through a cursor or otherwise. Other users can
declare a cursor on the same tables you use for your cursor, but
they cannot get an update lock on your currently fetched pages.

• If you specify the shared option, you can read data on the currently
fetched pages only. Other users cannot update your currently
fetched pages, through a cursor or otherwise.

• If you specify the holdlock option, you can read data on all pages
fetched (in a current transaction) or only the pages currently
fetched (if not in a transaction). Other users cannot update your
currently fetched pages or pages fetched in your current
transaction, through a cursor or otherwise. Other users can
declare a cursor on the same tables you use for your cursor, but
they cannot get an update lock on your currently fetched pages or
the pages fetched in your current transaction.

• If you specify both options, you can read data on all pages fetched
(in a current transaction) or only the pages currently fetched (if
not in a transaction). Other users cannot update your currently
fetched pages, through a cursor or otherwise.

Getting Information About Cursors

Use the system procedure sp_cursorinfo to find information about a
cursor’s name, its current status (such as open or closed), and its
result columns. The following example displays information about
the authors_crsr cursor:

sp_cursorinfo 0, authors_crsr



17-26 Cursors: Accessing Data Row by Row

Using Browse Mode in Place of Cursors Adaptive Server Enterprise Release 11.5.x

Cursor name 'authors_crsr' is declared at nesting
    level '0'.
The cursor id is 327681
The cursor has been successfully opened 1 times
The cursor was compiled at isolation level 1.
The cursor is not open.
The cursor will remain open when a transaction is
    committed or rolled back.
The number of rows returned for each FETCH is 1.
The cursor is updatable.
There are 3 columns returned by this cursor.

The result columns are:
Name = 'au_id', Table = 'authors', Type = ID,
    Length = 11 (updatable)
Name = 'au_lname', Table = 'authors', Type =
    VARCHAR, Length = 40 (updatable)
Name = 'au_fname', Table = 'authors', Type =
    VARCHAR, Length = 20 (updatable)

Other methods of checking the status of a cursor are to use the
@@sqlstatus and @@rowcount global variables. See “Checking the
Cursor Status” on page 17-14 for information on @@sqlstatus and
“Checking the Number of Rows Fetched” on page 17-16 for
information on @@rowcount.

For more information about sp_cursorinfo, see the Adaptive Server
Reference Manual.

Using Browse Mode in Place of Cursors

Browse mode lets you search through a table and update its values
one row at a time. It is used in front-end applications using
DB-Library and a host programming language. Browse mode is
useful because it provides compatibility with Open Server™
applications and older Open Client libraries. However, its use in new
Client-Library™ applications (release 10.0.x and later) is
discouraged, because cursors provide the same functionality in a
more portable and flexible manner. Also, browse mode is Sybase-
specific and is not suited to heterogeneous environments.

Normally, you should use cursors to update data when you want to
change table values row by row. Client-Library applications can use
Client-Library cursors to implement some browse-mode features,
such as updating a table while fetching rows from it. However, be
aware cursors may cause locking contention in the tables being
selected.



Transact-SQL User’s Guide 17-27

Adaptive Server Enterprise Release 11.5.x Using Browse Mode in Place of Cursors

For more information on browse mode, see the dbqual function in the
Open Client/Server™ documentation.

Browsing a Table

To browse a table in a front-end application, append the for browse
keywords to the end of the select statement sent to Adaptive Server.

For example:

Start of select statement in an Open Client application

...

for browse

Completion of the Open Client application routine

A table can be browsed in a front-end application if its rows have
been timestamped.

Browse Mode Restrictions

A for browse clause cannot be used in statements involving the union
operator or in cursor declarations.

The use of the keyword holdlock is forbidden in a select statement that
includes the for browse option.

The keyword distinct in the select statement is ignored in browse
mode.

Timestamping a New Table for Browsing

When creating a new table for browsing, include a column named
timestamp in the table definition. This column is automatically
assigned the timestamp datatype; you do not have to specify its
datatype. For example:

create table newtable(col1 int, timestamp,
    col3 char(7))

Whenever you insert or update a row, Adaptive Server timestamps it
by automatically assigning a unique varbinary value to the timestamp
column.



17-28 Cursors: Accessing Data Row by Row

Using Browse Mode in Place of Cursors Adaptive Server Enterprise Release 11.5.x

Timestamping an Existing Table

To prepare an existing table for browsing, add a column named
timestamp with alter table. For example:

alter table oldtable add timestamp

A timestamp column with a NULL value is added to each existing
row. To generate a timestamp, update each row without specifying
new column values.

For example:

update oldtable
set col1 = col1

Comparing timestamp Values

Use the tsequal system function to compare timestamps when you are
using browse mode in a front-end application. For example, the
following statement updates a row in publishers that has been
browsed. It compares the timestamp column in the browsed version
of the row with the hexadecimal timestamp in the stored version. If
the two timestamps are not equal, you receive an error message, and
the row is not updated.

update publishers
set city = "Springfield"
where pub_id = "0736"
and tsequal(timestamp,0x0001000000002ea8)

Do not use the tsequal function in the where clause as a search
argument. When you use tsequal, the rest of the where clause should
match a single row uniquely. Use the tsequal function only in insert and
update statements. If a timestamp column is used as a search clause, it
should be compared like a regular varbinary column, that is,
timestamp1 = timepstamp2.



Transact-SQL User’s Guide 18-1

18 Transactions: Maintaining Data
Consistency and Recovery 18.

A transaction groups a set of Transact-SQL statements so that they
are treated as a unit. Either all statements in the group are executed
or no statements are executed. Adaptive Server locks the tables
queried during the transaction until it completes the transaction.

This chapter discusses:

• How Transactions Work   18-1

• Using Transactions   18-4

• Selecting the Transaction Mode and Isolation Level   18-13

• Using Transactions in Stored Procedures and Triggers   18-22

• Using Cursors in Transactions   18-29

• Issues to Consider When Using Transactions   18-30

• Backup and Recovery of Transactions   18-31

For more information about transactions, see the Performance and
Tuning Guide.

How Transactions Work

Adaptive Server automatically manages all data modification
commands, including single-step change requests, as transactions.
By default, each insert, update, and delete statement is considered a
single transaction.

However, consider the following scenario: Lee needs to make a series
of data retrievals and modifications to the authors, titles, and
titleauthors tables. As she is doing so, Lil begins to update the titles
table. Lil’s updates could cause inconsistent results with the work
that Lee is doing. To prevent this from happening, Lee can group her
statements into a single transaction, which locks Lil out of the
portions of the tables that Lee is working on. This allows Lee to
complete her work based on accurate data. After she completes her
table updates, Lil’s updates can take place.

You can use the following commands to create transactions:

• begin transaction – marks the beginning of the transaction block. Its
syntax is:

begin {transaction | tran} [ transaction_name ]



18-2 Transactions: Maintaining Data Consistency and Recovery

How Transactions Work Adaptive Server Enterprise Release 11.5.x

where transaction_name is the name assigned to the transaction.
It must conform to the rules for identifiers. Use transaction
names only on the outermost pair of nested begin/commit or
begin/rollback statements.

• save transaction – marks a savepoint within a transaction:

save {transaction | tran} savepoint_name

where savepoint_name is the name assigned to the savepoint. It
must conform to the rules for identifiers.

• commit – commits the entire transaction:

commit [transaction | tran | work]
[ transaction_name ]

• rollback – rolls a transaction back to a savepoint or to the beginning
of a transaction:

rollback [transaction | tran | work]
[ transaction_name |  savepoint_name ]

For example, user Lee sets out to change the royalty split for two
authors of The Gourmet Microwave. Since the database would be
inconsistent between the two updates, they must be grouped into a
transaction, as shown in the following example:

begin transaction royalty_change

update titleauthor
set royaltyper = 65
from titleauthor, titles
where royaltyper = 75
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

update titleauthor
set royaltyper = 35
from titleauthor, titles
where royaltyper = 25
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

save transaction percentchanged

/* After updating the royaltyper entries for
** the two authors, insert the savepoint
** percentchanged, then determine how a 10%
** increase in the book’s price would affect
** the authors’ royalty earnings. */



Transact-SQL User’s Guide 18-3

Adaptive Server Enterprise Release 11.5.x How Transactions Work

update titles
set price = price * 1.1
where title = "The Gourmet Microwave"

select (price * total_sales) * royaltyper
from titles, titleauthor
where title = "The Gourmet Microwave"
and titles.title_id = titleauthor.title_id

/* The transaction is rolled back to the savepoint
** with the rollback transaction command. */

rollback transaction percentchanged

commit transaction

Transactions allow Adaptive Server to guarantee:

• Consistency – Simultaneous queries and change requests cannot
collide with each other, and users never see or operate on data
that is part way through a change.

• Recovery – In case of system failure, database recovery is
complete and automatic.

To support SQL standards-compliant transactions, Adaptive Server
allows you to select the mode and isolation level for your
transactions. Applications that require SQL standards-compliant
transactions should set those options at the beginning of every
session. Transaction modes and isolation levels are described later in
this chapter. See “Selecting the Transaction Mode and Isolation
Level” on page 18-13 for more information.

Transactions and Consistency

In a multiuser environment, Adaptive Server must prevent
simultaneous queries and data modification requests from
interfering with each other. This is important because if the data
being processed by a query could be changed by another user’s
update, the results of the query would be ambiguous.

Adaptive Server automatically sets the appropriate level of locking
for each transaction. You can make shared locks more restrictive on a
query-by-query basis by including the holdlock keyword in a select
statement.



18-4 Transactions: Maintaining Data Consistency and Recovery

Using Transactions Adaptive Server Enterprise Release 11.5.x

Transactions and Recovery

A transaction is both a unit of work and a unit of recovery. The fact
that Adaptive Server handles single-step change requests as
transactions means that the database can be recovered completely in
case of failure.

Adaptive Server’s recovery time is measured in minutes and
seconds. You can specify the maximum acceptable recovery time.

The SQL commands related to recovery and backup are discussed in
“Backup and Recovery of Transactions” on page 18-31.

➤ Note
Grouping large numbers of Transact-SQL commands into one long-running

transaction may affect recovery time. If Adaptive Server fails before the

transaction commits, recovery takes longer, because Adaptive Server must

undo the transaction.

Using Transactions When Component Integration Services Is Enabled

If you are using remote database with Component Integration
Services, there are a few differences with the way transactions are
handled. See the Component Integration Services User’s Guide for more
information.

Using Transactions

The begin transaction and commit transaction commands tell Adaptive
Server to process any number of individual commands as a single
unit. The rollback transaction command undoes the transaction, either
back to its beginning, or back to a savepoint. You define a savepoint
inside a transaction with the save transaction command.

Transactions give you control over transaction management. In
addition to grouping SQL statements to behave as a single unit, they
improve performance, since system overhead is incurred once per
transaction, rather than once for each individual command.

Any user can define a transaction. No permission is required for any
of the transaction commands.

The following sections discuss general transaction topics and
transaction commands, with examples.



Transact-SQL User’s Guide 18-5

Adaptive Server Enterprise Release 11.5.x Using Transactions

Allowing Data Definition Commands in Transactions

You can use certain data definition language commands in
transactions by setting the ddl in tran database option to true. If ddl in
tran is true in a particular database, you can issue commands such as
create table, grant, and alter table inside transactions in that database. If
ddl in tran is true in the model database, you can issue the commands
inside transactions in all databases created after ddl in tran was set to
true in model. To check the current settings of ddl in tran, use sp_helpdb.

◆ WARNING!
Be careful when using data definition commands. The only scenario
in which using data definition language commands inside
transactions is justified is in create schema. Data definition language
commands hold locks on system tables such as sysobjects . If you
use data definition language commands inside transactions, keep the
transactions short.

Avoid using data definition language commands on tempdb  within
transactions; doing so can slow performance to a halt. Always leave
ddl in tran set to false in tempdb .

To set ddl in tran to true, type the following command:

sp_dboption database_name ,"ddl in tran", true

Then, execute the checkpoint command in that database.

The first parameter specifies the name of the database in which to set
the option. You must be using the master database to execute
sp_dboption. Any user can execute sp_dboption with no parameters to
display the current option settings. To set options, however, you
must be either a System Administrator or the Database Owner.



18-6 Transactions: Maintaining Data Consistency and Recovery

Using Transactions Adaptive Server Enterprise Release 11.5.x

The following commands are allowed inside a transaction only if the
ddl in tran option to sp_dboption is set to true:

System procedures that change the master database or create
temporary tables cannot be used inside transactions.

Never use the following commands inside a transaction:

System Procedures That Are Not Allowed in Transactions

You cannot use the following system procedures within transactions:

• sp_helpdb, sp_helpdevice, sp_helpindex, sp_helpjoins, sp_helpserver,
sp_lookup, sp_spaceused, and sp_syntax (because they create
temporary tables)

• sp_configure

• System procedures that change the master database

Beginning and Committing Transactions

The begin transaction and commit transaction commands can enclose any
number of SQL statements and stored procedures. The syntax for
both statements is:

begin {transaction | tran} [ transaction_name ]

commit {transaction | tran | work} [ transaction_name ]

Table 18-1: DDL commands allowed in transactions

alter table
(clauses other
than partition
and unpartition
are allowed)

create default
create index
create procedure
create rule
create schema
create table
create trigger
create view

drop default
drop index
drop procedure
drop rule
drop table
drop trigger
drop view

grant
revoke

Table 18-2: DDL commands not allowed in transactions

alter database
alter table...partition
alter table...unpartition
create database

disk init
dump database
dump transaction
drop database

load transaction
load database
reconfigure

select into
update statistics
truncate table



Transact-SQL User’s Guide 18-7

Adaptive Server Enterprise Release 11.5.x Using Transactions

transaction_name is the name assigned to the transaction. It must
conform to the rules for identifiers.

The keywords transaction, tran, and work (in commit transaction) are
synonymous; you can use one in the place of the others. However,
transaction and tran are Transact-SQL extensions; only work is SQL
standards-compliant.

Here is a skeletal example:

begin tran
    statement
    procedure
    statement
commit tran

commit transaction does not affect Adaptive Server if the transaction is
not currently active.

Rolling Back and Saving Transactions

If you must cancel a transaction before it commits—either because of
some failure or because of a change by the user—you must undo all
of its completed statements or procedures.

You can cancel or roll back a transaction with the rollback transaction
command anytime before the commit transaction command has been
given. Using savepoints, you can cancel either an entire transaction
or part of it. However, you cannot cancel a transaction after it has
been committed.

The syntax of the rollback transaction command is:

rollback {transaction | tran | work}
[ transaction_name  | savepoint_name ]

A savepoint is a marker that the user puts inside a transaction to
indicate a point to which it can be rolled back. You can commit only
certain portions of a batch by rolling back the undesired portion to a
savepoint before committing the entire batch.

You can insert a savepoint by putting a save transaction command in
the transaction. The syntax is:

save {transaction | tran} savepoint_name

The savepoint name must conform to the rules for identifiers.

If no savepoint_name or transaction_name is given with the rollback
transaction command, the transaction is rolled back to the first begin
transaction in a batch.



18-8 Transactions: Maintaining Data Consistency and Recovery

Using Transactions Adaptive Server Enterprise Release 11.5.x

Here is how you can use the save transaction and rollback transaction
commands:

begin tran
statements                                          Group A

    save tran mytran
statements                                 Group B

    rollback tran mytran                  Rolls back group B
statements                                           Group C

commit tran Commits groups A and C

Until you issue a commit transaction, Adaptive Server considers all
subsequent statements to be part of the transaction, unless it
encounters another begin transaction statement. At that point, Adaptive
Server considers all subsequent statements to be part of the new,
nested transaction. Nested transactions are described under “Nested
Transactions” on page 18-10.

rollback transaction or save transaction does not affect Adaptive Server and
does not return an error message if the transaction is not currently
active.

You can also use save transaction to create transactions in stored
procedures or triggers in such a way that they can be rolled back
without affecting batches or other procedures. For example:

create proc myproc as
begin tran
save tran mytran
statements
if ...
    begin
        rollback tran mytran
    /*
    ** Rolls back to savepoint.
    */
        commit tran
    /*
    ** This commit needed; rollback to a savepoint
    ** does not cancel a transaction.
    */
   end

else
commit tran
    /*
    ** Matches begin tran; either commits
    ** transaction (if not nested) or
    ** decrements nesting level.
    */



Transact-SQL User’s Guide 18-9

Adaptive Server Enterprise Release 11.5.x Using Transactions

Unless you are rolling back to a savepoint, use transaction names
only on the outermost pair of begin/commit or begin/rollback
statements.

◆ WARNING!
Transaction names are ignored, or can cause errors, when used in
nested transaction statements. If you are using transactions in stored
procedures or triggers that could be called from within other
transactions, do not use transaction names.

Checking the State of Transactions

The global variable @@transtate keeps track of the current state of a
transaction. Adaptive Server determines what state to return by
keeping track of any transaction changes after a statement executes.
@@transtate may contain the following values:

Adaptive Server does not clear @@transtate after every statement. In
a transaction, you can use @@transtate after a statement (such as an
insert) to determine whether it was successful or aborted, and to
determine its effect on the transaction. The following example checks
@@transtate during a transaction (after a successful insert) and after
the transaction commits:

begin transaction
insert into publishers (pub_id) values ("9999")

(1 row affected)

select @@transtate

Table 18-3: @@transtate values

Value Meaning

0 Transaction in progress. A transaction is in effect; the
previous statement executed successfully.

1 Transaction succeeded. The transaction completed and
committed its changes.

2 Statement aborted. The previous statement was aborted; no
effect on the transaction.

3 Transaction aborted. The transaction aborted and rolled
back any changes.



18-10 Transactions: Maintaining Data Consistency and Recovery

Using Transactions Adaptive Server Enterprise Release 11.5.x

----------
0

(1 row affected)

commit transaction
select @@transtate

----------
1

(1 row affected)

The next example checks @@transtate after an unsuccessful insert (due
to a rule violation) and after the transaction rolls back:

begin transaction
insert into publishers (pub_id) values ("7777")

Msg 552, Level 16, State 1:
A column insert or update conflicts with a rule
bound to the column. The command is aborted. The
conflict occured in database 'pubs2', table
'publishers', rule 'pub_idrule', column 'pub_id'.

select @@transtate

----------
2

(1 row affected)

rollback transaction

select @@transtate

----------
3

(1 row affected)

Adaptive Server does not clear @@transtate after every statement. It
changes @@transtate only in response to an action taken by a
transaction. Syntax and compile errors do not affect the value of
@@transtate.

Nested Transactions

You can nest transactions within other transactions. When you nest
begin transaction and commit transaction statements, the outermost pair
actually begin and commit the transaction. The inner pairs just keep
track of the nesting level. Adaptive Server does not commit the



Transact-SQL User’s Guide 18-11

Adaptive Server Enterprise Release 11.5.x Using Transactions

transaction until the commit transaction that matches the outermost
begin transaction is issued. Normally, this transaction “nesting” occurs
as stored procedures or triggers that contain begin/commit pairs call
each other.

The @@trancount global variable keeps track of the current nesting
level for transactions. An initial implicit or explicit begin transaction
sets @@trancount to 1. Each subsequent begin transaction increments
@@trancount, and a commit transaction decrements it. Firing a trigger
also increments @@trancount, and the transaction begins with the
statement that causes the trigger to fire. Nested transactions are not
committed unless @@trancount equals 0.

For example, the following nested groups of statements are not
committed by Adaptive Server until the final commit transaction:

begin tran
    select @@trancount
    /* @@trancount = 1 */

    begin tran
        select @@trancount
        /* @@trancount = 2 */

        begin tran
            select @@trancount
            /* @@trancount = 3 */
        commit tran

    commit tran

commit tran

select @@trancount
/* @@ trancount = 0 */

When you nest a rollback transaction statement without including a
transaction or savepoint name, it rolls back to the outermost begin
transaction statement and cancels the transaction.



18-12 Transactions: Maintaining Data Consistency and Recovery

Using Transactions Adaptive Server Enterprise Release 11.5.x

Example of a Transaction

This example shows how a transaction might be specified:

begin transaction royalty_change

/* A user sets out to change the royalty split */
/* for the two authors of The Gourmet Microwave. */
/* Since the database would be inconsistent */
/* between the two updates, they must be grouped */
/* into a transaction. */

update titleauthor
set royaltyper = 65
from titleauthor, titles
where royaltyper = 75
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

update titleauthor
set royaltyper = 35
from titleauthor, titles
where royaltyper = 25
and titleauthor.title_id = titles.title_id
and title = "The Gourmet Microwave"

save transaction percent_changed

/* After updating the royaltyper entries for */
/* the two authors, the user inserts the */
/* savepoint “percent_changed,” and then checks */
/* to see how a 10 percent increase in the
/* price would affect the authors’ royalty */
/* earnings. */

update titles
set price = price * 1.1
where title = "The Gourmet Microwave"

select (price * royalty * total_sales) * royaltyper
from titles, titleauthor, roysched
where title = "The Gourmet Microwave"
and titles.title_id = titleauthor.title_id
and titles.title_id = roysched.title_id

rollback transaction percent_changed

/* The transaction rolls back to the savepoint */
/* with the rollback transaction command. */
/* Without a savepoint, it would roll back to */
/* the begin transaction. */

commit transaction



Transact-SQL User’s Guide 18-13

Adaptive Server Enterprise Release 11.5.x Selecting the Transaction Mode and Isolation Level

Selecting the Transaction Mode and Isolation Level

Adaptive Server provides the following options to support SQL
standards-compliant transactions:

• The transaction mode lets you set whether transactions begin
with or without an implicit begin transaction statement.

• The isolation level refers to the degree to which data can be
accessed by other users during a transaction.

Set these options at the beginning of every session that requires SQL
standards-compliant transactions.

The following sections describe these options in more detail.

Choosing a Transaction Mode

Adaptive Server supports the following transaction modes:

• The SQL standards-compatible mode, called chained mode,
implicitly begins a transaction before any data retrieval or
modification statement. These statements include: delete, insert,
open, fetch, select, and update. You must still explicitly end the
transaction with commit transaction or rollback transaction.

• The default mode, called unchained mode or Transact-SQL
mode, requires explicit begin transaction statements paired with
commit transaction or rollback transaction statements to complete the
transaction.

You can set either mode using the chained option of the set command.
However, do not mix these transaction modes in your applications.
The behavior of stored procedures and triggers can vary, depending
on the mode, and you may require special action to run a procedure
in one mode that was created in the other.

The SQL standards require every SQL data-retrieval and data-
modification statement to occur inside a transaction, using chained
mode. A transaction automatically starts with the first data-retrieval
or data-modification statement after the start of a session or after the
previous transaction commits or aborts. This is the chained
transaction mode.

You can set this mode for your current session by turning on the
chained option of the set statement:

set chained on



18-14 Transactions: Maintaining Data Consistency and Recovery

Selecting the Transaction Mode and Isolation Level Adaptive Server Enterprise Release 11.5.x

However, you cannot execute the set chained command within a
transaction. To return to the unchained transaction mode, set the
chained option to off. The default transaction mode is unchained.

In chained transaction mode, Adaptive Server implicitly executes a
begin transaction statement just before the following data retrieval or
modification statements: delete, insert, open, fetch, select, and update. For
example, the following group of statements produce different
results, depending on which mode you use:

insert into publishers
    values ("9906", null, null, null)
begin transaction
delete from publishers where pub_id = "9906"
rollback transaction

In unchained transaction mode, the rollback affects only the delete
statement, so publishers still contains the inserted row. In chained
mode, the insert statement implicitly begins a transaction, and the
rollback affects all statements up to the beginning of that transaction,
including the insert.

All application programs and ad hoc user queries should know their
current transaction mode. Which transaction mode you use depends
on whether or not a particular query or application requires
compliance to the SQL standards. Applications that use chained
transactions (for example, the Embedded SQL precompiler) should
set chained mode at the beginning of each session.

Transaction Modes and Nested Transactions

Although chained mode implicitly begins transactions with data
retrieval or modification statements, you can nest transactions only
by explicitly using begin transaction statements. Once the first
transaction implicitly begins, further data retrieval or modification
statements no longer begin transactions until after the first
transaction commits or aborts. For example, in the following query,
the first commit transaction commits all changes in chained mode; the
second commit is unnecessary:

insert into publishers
    values ("9907", null, null, null)
    insert into publishers
        values ("9908", null, null, null)
    commit transaction
commit transaction



Transact-SQL User’s Guide 18-15

Adaptive Server Enterprise Release 11.5.x Selecting the Transaction Mode and Isolation Level

➤ Note
In chained mode, a data retrieval or modification statement begins a

transaction whether or not it executes successfully. Even a select that does

not access a table begins a transaction.

Finding the Status of the Current Transaction Mode

You can check the global variable @@tranchained to determine
Adaptive Server’s current transaction mode. select @@tranchained
returns 0 for unchained mode or 1 for chained mode.

Choosing an Isolation Level

The SQL92 standard defines four levels of isolation for transactions.
Each isolation level specifies the kinds of actions that are not
permitted while concurrent transactions are executing. Higher levels
include the restrictions imposed by the lower levels:

• Level 0 – ensures that data written by one transaction represents
the actual data. It prevents other transactions from changing data
that has already been modified (through an insert, delete, update,
and so on) by an uncommitted transaction. The other transactions
are blocked from modifying that data until the transaction
commits. However, other transactions can still read the
uncommitted data, which results in dirty reads.

• Level 1 – prevents dirty reads. Such reads occur when one
transaction modifies a row, and a second transaction reads that
row before the first transaction commits the change. If the first
transaction rolls back the change, the information read by the
second transaction becomes invalid. This is the default isolation
level supported by Adaptive Server.

• Level 2 – prevents nonrepeatable reads. Such reads occur when
one transaction reads a row and a second transaction modifies
that row. If the second transaction commits its change,
subsequent reads by the first transaction yield different results
than the original read. (Adaptive Server does not support this
level.)

• Level 3 – ensures that data read by one transaction is valid until
the end of that transaction, hence preventing phantoms.
Adaptive Server supports this level through the holdlock keyword
of the select statement, which applies a read-lock on the specified



18-16 Transactions: Maintaining Data Consistency and Recovery

Selecting the Transaction Mode and Isolation Level Adaptive Server Enterprise Release 11.5.x

data. Phantoms occur when one transaction reads a set of rows
that satisfy a search condition, and then a second transaction
modifies the data (through an insert, delete, update, and so on). If the
first transaction repeats the read with the same search conditions,
it obtains a different set of rows.

You can set the isolation level for your session by using the transaction
isolation level option of the set command. You can enforce the isolation
level for just a query as opposed to using the at isolation clause of the
select statement. For example:

set transaction isolation level 0

Preventing Dirty Reads, Nonrepeatable Reads, and Phantoms

By default, the Adaptive Server transaction isolation level is 1. The
SQL92 standard requires that level 3 be the default isolation for all
transactions. This prevents dirty reads, nonrepeatable reads, and
phantoms. To enforce this default level of isolation, Transact-SQL
provides the transaction isolation level 3 option of the set statement. This
option instructs Adaptive Server to apply a holdlock to all select
operations in a transaction. For example:

set transaction isolation level 3

Applications that use transaction isolation level 3 should set that isolation
level at the beginning of each session. However, setting transaction
isolation level 3 causes Adaptive Server to hold any read locks for the
duration of the transaction. If you also use the chained transaction
mode, that isolation level remains in effect for any data retrieval or
modification statement that implicitly begins a transaction. In both
cases, this can lead to concurrency problems for some applications,
since more locks may be held for longer periods of time.

To return your session to the Adaptive Server default isolation level:

set transaction isolation level 1

Dirty Reads

Applications that are not impacted by dirty reads may have better
concurrency and reduced deadlocks when accessing the same data
by setting transaction isolation level 0 at the beginning of each session. An
example is an application that finds the momentary average balance
for all savings accounts stored in a table. Since it requires only a
snapshot of the current average balance, which probably changes
frequently in an active table, the application should query the table



Transact-SQL User’s Guide 18-17

Adaptive Server Enterprise Release 11.5.x Selecting the Transaction Mode and Isolation Level

using isolation level 0. Other applications that require data
consistency, such as deposits and withdrawals to specific accounts in
the table, should avoid using isolation level 0.

Scans at isolation level 0 do not acquire any read locks for their scans,
so they do not block other transactions from writing to the same data,
and vice versa. However, even if you set your isolation level to 0,
utilities (like dbcc) and data modification statements (like update) still
acquire read locks for their scans, because they must maintain the
database integrity by ensuring that the correct data has been read
before modifying it.

Because scans at isolation level 0 do not acquire any read locks, it is
possible that the result set of a level 0 scan may change while the scan
is in progress. If the scan position is lost due to changes in the
underlying table, a unique index is required to restart the scan. In the
absence of a unique index, the scan may be aborted.

By default, a unique index is required for a level 0 scan on a table that
does not reside in a read-only database. You can override this
requirement by forcing Adaptive Server to choose a nonunique
index or a table scan, as follows:

select * from table_name  (index table_name )

Activity on the underlying table may abort the scan before
completion.

Finding the Status of the Current Isolation Level

The global variable @@isolation contains the current isolation level of
your Transact-SQL session. Querying @@isolation returns the value
of the active level (0, 1, or 3). For example:

select @@isolation

--------
1

(1 row affected)

For more information about isolation levels and locking, see Chapter
5, “Locking in Adaptive Server,” in the Performance and Tuning Guide.

Changing the Isolation Level for a Query

You can change the isolation level for a query by using the at isolation
clause with the select or readtext statements. The read uncommitted, read



18-18 Transactions: Maintaining Data Consistency and Recovery

Selecting the Transaction Mode and Isolation Level Adaptive Server Enterprise Release 11.5.x

committed, and serializable options of at isolation represent each isolation
level as defined below:

For example, the following two statements query the same table at
isolation levels 0 and 3, respectively:

select *
from titles
at isolation read uncommitted

select *
from titles
at isolation serializable

The at isolation clause is valid only for single select and readtext queries
or in the declare cursor statement. Adaptive Server returns a syntax
error if you use at isolation:

• With a query using the into clause

• Within a subquery

• With a query in the create view statement

• With a query in the insert statement

• With a query using the for browse clause

If there is a union operator in the query, you must specify the at isolation
clause after the last select.

The SQL-92 standard defines read uncommitted, read committed, and
serializable as options for at isolation and set transaction isolation level. A
Transact-SQL extension also allows you to specify 0, 1, or 3 for at
isolation. To simplify the discussion of isolation levels, the
at isolation examples in this manual do not use this extension.

You can also enforce isolation level 3 using the holdlock keyword of
the select statement. However, you cannot specify noholdlock or shared
in a query that also specifies at isolation read uncommitted. (If you specify
holdlock and isolation level 0 in a query, Adaptive Server issues a
warning and ignores the at isolation clause.) When you use different
ways to set an isolation level, the holdlock keyword takes precedence
over the at isolation clause (except for isolation level 0), and at isolation

at isolation Option Isolation Level

read uncommited 0

read committed 1

serializable 3



Transact-SQL User’s Guide 18-19

Adaptive Server Enterprise Release 11.5.x Selecting the Transaction Mode and Isolation Level

takes precedence over the session level defined by set transaction
isolation level. For more information about isolation levels and locking,
see Chapter 5, “Locking in Adaptive Server,” in the Performance and
Tuning Guide.

Isolation Level Precedences

The following describes the precedence rules as they apply to the
different methods of defining isolation levels:

1. The holdlock, noholdlock, and shared keywords take precedence over
the at isolation clause and set transaction isolation level option, except
in the case of isolation level 0. For example:

/* This query executes at isolation level 3 */
select *
    from titles holdlock
    at isolation read committed

create view authors_nolock
    as select * from authors noholdlock
set transaction isolation level 3
/* This query executes at isolation level 1 */
select * from authors_nolock

2. The at isolation clause takes precedence over the set transaction
isolation level option. For example:

set transaction isolation level 3
/* executes at isolation level 0 */
select * from publishers
    at isolation read uncommitted

You cannot use the read uncommitted option of at isolation in the
same query as the holdlock, noholdlock, and shared keywords.

3. The transaction isolation level 0 option of the set command takes
precedence over the holdlock, noholdlock, and shared keywords. For
example:

set transaction isolation level 0
/* executes at isolation level 0 */
select *
    from titles holdlock

Adaptive Server issues a warning before executing the above
query.



18-20 Transactions: Maintaining Data Consistency and Recovery

Selecting the Transaction Mode and Isolation Level Adaptive Server Enterprise Release 11.5.x

Cursors and Isolation Levels

Adaptive Server provides three isolation levels for cursors:

• Level 0 – Adaptive Server uses no locks on base table pages that
contain a row representing a current cursor position. Cursors
acquire no read locks for their scans, so they do not block other
applications from accessing the same data. However, cursors
operating at this isolation level are not updatable, and they
require a unique index on the base table to ensure the accuracy of
their scans.

• Level 1 – Adaptive Server uses a shared or update lock on base
table pages that contain a row representing a current cursor
position. The page remains locked until the current cursor
position moves off the page (as a result of fetch statements), or the
cursor is closed. If an index is used to search the base table rows,
it also applies shared or update locks to the corresponding index
pages. This is the default locking behavior for Adaptive Server.

• Level 3 – Adaptive Server uses a shared or update lock on any
base table pages that have been read in a transaction on behalf of
the cursor. In addition, the locks are held until the transaction
ends, as opposed to being released when the data page is no
longer needed. The holdlock keyword applies this locking level to
the base tables, as specified by the query on the tables or views.

Besides using holdlock, you can use set transaction isolation level to define
one of the above levels for your session. After setting this option, any
cursor you open uses that isolation level. You can also use the select
statement’s at isolation clause to change the isolation level for a specific
cursor. For example:

declare commit_crsr cursor
for select *
from titles
at isolation read committed

This statement makes the cursor operate at isolation level 1,
regardless of the isolation level of the transaction or session. If you
declare a cursor at isolation level 0 (read uncommitted), Adaptive Server
also defines the cursor as read-only. You cannot specify the for update
clause along with at isolation read uncommitted in a declare cursor
statement.

Adaptive Server determines a cursor’s isolation level when you
open the cursor (not when you declare it), based on the following:



Transact-SQL User’s Guide 18-21

Adaptive Server Enterprise Release 11.5.x Selecting the Transaction Mode and Isolation Level

• If the cursor was declared with the at isolation clause, that isolation
level overrides the transaction isolation level in which it is
opened.

• If the cursor was not declared with at isolation, the cursor uses the
isolation level in which it is opened. If you close the cursor and
reopen it later, the cursor acquires the current isolation level of
the transaction.

Adaptive Server compiles the cursor’s query when you declare it.
This compilation process is different for isolation level 0 as compared
to isolation levels 1 or 3. If you declare a language or client cursor in
a transaction with isolation level 1 or 3, opening it in a transaction at
isolation level 0 causes an error.

For example:

set transaction isolation level 1

declare publishers_crsr cursor
    for select *
    from publishers

open publishers_crsr     /* no error */

fetch publishers_crsr

close publishers_crsr

set transaction isolation level 0

open publishers_crsr     /* error */

Stored Procedures and Isolation Levels

The Sybase system procedures always operate at isolation level 1,
regardless of the isolation level of the transaction or session. User
stored procedures operate at the isolation level of the transaction that
executes it. If the isolation level changes within a stored procedure,
the new isolation level remains in effect only during the execution of
the stored procedure.

Triggers and Isolation Levels

Since triggers are fired by data modification statements (like insert),
all triggers execute at either the transaction’s isolation level or
isolation level 1, whichever is higher. So, if a trigger fires in a
transaction at level 0, Adaptive Server sets the trigger’s isolation
level to 1 before executing its first statement.



18-22 Transactions: Maintaining Data Consistency and Recovery

Using Transactions in Stored Procedures and Triggers Adaptive Server Enterprise Release 11.5.x

Compliance to SQL Standards

To get transactions that comply with SQL standards, you must set the
chained and transaction isolation level 3 options at the beginning of every
application that changes the mode and isolation level for subsequent
transactions. If your application uses cursors, you must also set the
close on endtran option. Each of these options is described later.

Using Transactions in Stored Procedures and Triggers

You can use transactions in stored procedures and triggers just as
with statement batches. If a transaction in a batch or stored
procedure invokes another stored procedure or trigger containing a
transaction, that second transaction is nested into the first one.

The first explicit or implicit (using chained mode) begin transaction
starts the transaction in the batch, stored procedure, or trigger. Each
subsequent begin transaction increments the nesting level. Each
subsequent commit transaction decrements the nesting level until it
reaches 0. Adaptive Server then commits the entire transaction. A
rollback transaction aborts the entire transaction up to the first begin
transaction regardless of the nesting level or the number of stored
procedures and triggers it spans.

In stored procedures and triggers, the number of begin transaction
statements must match the number of commit transaction statements.
This also applies to stored procedures that use chained mode. The
first statement that implicitly begins a transaction must also have a
matching commit transaction.

Figure 18-1 demonstrates how nested transaction statements work
within stored procedures:



Transact-SQL User’s Guide 18-23

Adaptive Server Enterprise Release 11.5.x Using Transactions in Stored Procedures and Triggers

Figure 18-1: Nesting transaction statements

rollback transaction statements in stored procedures do not affect
subsequent statements in the procedure or batch that originally
called the procedure. Adaptive Server executes subsequent
statements in the stored procedure or batch. However, rollback
transaction statements in triggers abort the batch so that subsequent
statements are not executed.

➤ Note
rollback statements in triggers: 1) roll back the transaction, 2) complete

subsequent statements in the trigger, and 3) abort the batch so that

subsequent statements in the batch are not executed.

For example, the following batch calls the stored procedure myproc,
which includes a rollback transaction statement:

batch

begin tran
    statements...
    exec myproc
if ... rollback tran
else commit tran

transaction started by
begin tran

rollback aborts all
statements in myproc,
nextproc, and batch
-or-
commit commits all
statements in myproc,
nextproc, and batch

myproc

create proc myproc
as
begin tran
     statements...
     exec nextproc
if ... rollback tran
else commit tran

begin tran increments
nesting level

commit decrements
nesting level
-or-
rollback aborts all
statements in myproc,
nextproc and batch

nextproc

create proc nextproc
as
begin tran
    statements...
if ... rollback tran
else commit tran

begin tran increments
nesting level

commit decrements
nesting level
-or-
rollback aborts all
statements in myproc,
nextproc and batch

➀

➁

➂

➃

➄

➅



18-24 Transactions: Maintaining Data Consistency and Recovery

Using Transactions in Stored Procedures and Triggers Adaptive Server Enterprise Release 11.5.x

begin tran
update titles set ...
insert into titles ...
execute myproc
delete titles where ...

The update and insert statements are rolled back and the transaction is
aborted. Adaptive Server continues the batch and executes the delete
statement. However, if there is an insert trigger on a table that
includes a rollback transaction, the entire batch is aborted and the delete
is not executed. For example:

begin tran
update authors set ...
insert into authors ...
delete authors where ...

Different transaction modes or isolation levels for stored procedures
have certain requirements, which are described under “Transaction
Modes and Stored Procedures” on page 18-27. Triggers are not
affected by the current transaction mode, since they are called as part
of a data modification statement.

Errors and Transaction Rollbacks

Errors that affect data integrity can affect the state of implicit or
explicit transactions:

• Errors with severity levels of 19 or greater

Since these errors terminate the user connection to the server,
any errors of level 19 or greater that occur while a user
transaction is in progress abort the transaction and roll back all
statements to the outermost begin transaction. Adaptive Server
always rolls back any uncommitted transactions at the end of a
session.

• Errors in data modification commands that affect data integrity

- Arithmetic overflow and divide-by-zero errors (effects on
transactions can be changed with the set arithabort arith_overflow
command)

- Permissions violations

- Rules violations

- Duplicate key violations



Transact-SQL User’s Guide 18-25

Adaptive Server Enterprise Release 11.5.x Using Transactions in Stored Procedures and Triggers

The following table summarizes how rollback affects Adaptive Server
processing in several different contexts (such as within a transaction,
stored procedure, or trigger):

In stored procedures and triggers, the number of begin transaction
statements must match the number of commit statements. A
procedure or trigger that contains unpaired begin/commit statements
produces a warning message when it is executed. This also applies to

Table 18-4: How rollback affects processing

Context Effects of rollback

Transaction only All data modifications since the start of the transaction
are rolled back. If a transaction spans multiple batches,
rollback affects all of those batches.
Any commands issued after the rollback are executed.

Stored procedure
only

None.

Stored procedure in
a transaction

All data modifications since the start of the transaction
are rolled back. If a transaction spans multiple batches,
rollback affects all those batches.
Any commands issued after the rollback are executed.
Stored procedure produces error message 266:
“Transaction count after EXECUTE indicates that a
COMMIT or ROLLBACK TRAN is missing.”

Trigger only Trigger completes, but trigger effects are rolled back.
Any remaining commands in the batch are not
executed. Processing resumes at the next batch.

Trigger in a
transaction

Trigger completes, but trigger effects are rolled back.
All data modifications since the start of the transaction
are rolled back. If a transaction spans multiple batches,
rollback affects all those batches.
Any remaining commands in the batch are not
executed. Processing resumes at the next batch.

Nested trigger Inner trigger completes, but all trigger effects are rolled
back.
Any remaining commands in the batch are not
executed. Processing resumes at the next batch.

Nested trigger in a
transaction

Inner trigger completes, but all trigger effects are rolled
back.
All data modifications since the start of the transaction
are rolled back. If a transaction spans multiple batches,
rollback affects all those batches.
Any remaining commands in the batch are not
executed. Processing resumes at the next batch.



18-26 Transactions: Maintaining Data Consistency and Recovery

Using Transactions in Stored Procedures and Triggers Adaptive Server Enterprise Release 11.5.x

stored procedures that use chained mode: The first statement that
implicitly begins a transaction must have a matching commit.

With duplicate key errors and rules violations, the trigger completes
(unless there is also a return statement), and statements such as print,
raiserror, or remote procedure calls are performed. Then, the trigger
and the rest of the transaction are rolled back, and the rest of the
batch is aborted. Note that remote procedure calls executed from
inside a normal SQL transaction (not using the DB-Library two-
phase commit) are not rolled back by a rollback statement.

The following table summarizes how a rollback caused by a
duplicate key error or a rules violation affects Adaptive Server
processing in several different contexts:

Table 18-5: Rollbacks caused by duplicate key errors/rules violations

Context Effects of Duplicate Key or Rules Error Rollback

Transaction only Current command is aborted. Previous commands are
not rolled back, and subsequent commands are
executed.

Stored procedure
only

Same as above.

Stored procedure in a
transaction

Same as above.

Trigger only Trigger completes, but trigger effects are rolled back.
Any remaining commands in the batch are not
executed. Processing resumes at the next batch.

Trigger in a
transaction

Trigger completes, but trigger effects are rolled back.
All data modifications since the start of the transaction
are rolled back. If a transaction spans multiple batches,
the rollback affects all of those batches.
Any remaining commands in the batch are not
executed. Processing resumes at the next batch.

Nested trigger Inner trigger completes, but all trigger effects are
rolled back.
Any remaining commands in the batch are not
executed. Processing resumes at the next batch.

Nested trigger in a
transaction

Inner trigger completes, but all trigger effects are
rolled back.
All data modifications since the start of the transaction
are rolled back. If a transaction spans multiple batches,
the rollback affects all of those batches.
Any remaining commands in the batch are not
executed. Processing resumes at the next batch.



Transact-SQL User’s Guide 18-27

Adaptive Server Enterprise Release 11.5.x Using Transactions in Stored Procedures and Triggers

Transaction Modes and Stored Procedures

Stored procedures written to use the unchained transaction mode
may be incompatible with other transactions using chained mode,
and vice versa. For example, following is a valid stored procedure
using chained transaction mode:

create proc myproc
as
insert into publishers
    values ("9996", null, null, null)
commit work

A program using unchained transaction mode would fail if it called
this procedure because the commit does not have a corresponding
begin. You may encounter other problems:

• Applications that start a transaction using chained mode may
create impossibly long transactions or may hold data locks for the
entire length of their session. This behavior degrades Adaptive
Server performance.

• Applications may nest transactions at unexpected times. This can
produce different results, depending on the transaction mode.

As a rule, applications using one transaction mode should call stored
procedures written to use that mode. The exceptions to that rule are
Sybase system procedures (except for sp_procxmode), that can be
invoked by sessions using any transaction mode. (For information
about sp_proxmode, see “Setting Transaction Modes for Stored
Procedures” on page 18-28.) If no transaction is active when you
execute a system procedure, Adaptive Server turns off chained mode
for the duration of the procedure. Before returning, it resets the mode
its original setting.

Trigger with rollback
followed by an error
in the transaction

Trigger effects are rolled back. All data modifications
since the start of the transaction are rolled back. If a
transaction spans multiple batches, the rollback affects
all of those batches.
Trigger continues and gets duplicate key or rules error.
Normally, the trigger rolls back effects and continues,
but trigger effects are not rolled back in this case.
After the trigger completes, any remaining commands
in the batch are not executed. Processing resumes at
the next batch.

Table 18-5: Rollbacks caused by duplicate key errors/rules violations (continued)

Context Effects of Duplicate Key or Rules Error Rollback



18-28 Transactions: Maintaining Data Consistency and Recovery

Using Transactions in Stored Procedures and Triggers Adaptive Server Enterprise Release 11.5.x

Adaptive Server tags all procedures with the transaction mode
(“chained” or “unchained”) of the session in which they are created.
This helps avoid problems associated with transactions that use one
mode to invoke transactions that use the other mode. A stored
procedure tagged as “chained” is not executable in sessions using
unchained transaction mode, and vice versa.

Triggers are executable in any transaction mode. Since they are
always called as part of a data modification statement, either they are
part of a chained transaction (if the session uses chained mode) or
they maintain their current transaction mode.

◆ WARNING!
When using transaction modes, be aware of the effects each setting
can have on your applications.

Setting Transaction Modes for Stored Procedures

Use sp_procxmode to display or change the transaction mode of stored
procedures. For example, to change the transaction mode for the
stored procedure byroyalty to “chained”, enter:

sp_procxmode byroyalty, "chained"

sp_procxmode “anymode” lets stored procedures run under either
chained or unchained transaction mode. For example:

sp_procxmode byroyalty, "anymode"

Use sp_procxmode without any parameter values to get the transaction
modes for all stored procedures in the current database:

sp_procxmode

procedure name               transaction mode
-------------------------    --------------------
byroyalty Any Mode
discount_proc                Unchained
history_proc                 Unchained
insert_sales_proc            Unchained
insert_salesdetail_proc      Unchained
storeid_proc                 Unchained
storename_proc               Unchained
title_proc                   Unchained
titleid_proc         Unchained

(9 rows affected, return status = 0)



Transact-SQL User’s Guide 18-29

Adaptive Server Enterprise Release 11.5.x Using Cursors in Transactions

You can use sp_procxmode only in unchained transaction mode.

To change a procedure’s transaction mode, you must be a System
Administrator, the Database Owner, or the owner of the procedure.

Using Cursors in Transactions

By default, Adaptive Server does not change a cursor’s state (open or
closed) when a transaction ends through a commit or rollback. The SQL
standards, however, associate an open cursor with its active
transaction. Committing or rolling back that transaction
automatically closes any open cursors associated with it.

To enforce this SQL standards-compliant behavior, Adaptive Server
provides the close on endtran option of the set command. In addition, if
you set chained mode to on, Adaptive Server starts a transaction
when you open a cursor and closes that cursor when the transaction
is committed or rolled back.

For example, the following sequence of statements produces an error
by default:

open cursor test
commit tran
open cursor test

If you set either the close on endtran or chained options to on, the cursor’s
state changes from open to closed after the commit. This allows the
cursor to be reopened.

➤ Note
Since client application buffer rows are returned through cursors, and allow

users to scroll within those buffers, those client applications should not

scroll backward after a transaction aborts. The rows in a client cache may

become invalid because of a transaction rollback (unknown to the client)

that is enforced by the close on endtran option or the chained mode.

Any exclusive locks acquired by a cursor in a transaction are held
until the end of that transaction. This also applies to shared locks
when you use the holdlock keyword, the at isolation serializable clause, or
the set isolation level 3 option. However, if you do not set the close on
endtran option, the cursor remains open past the end of the
transaction, and its current page lock remains in effect. It may also
continue to acquire locks as it fetches additional rows.



18-30 Transactions: Maintaining Data Consistency and Recovery

Issues to Consider When Using Transactions Adaptive Server Enterprise Release 11.5.x

The following rules define the behavior of updates through a cursor
with regard to transactions:

• If an update occurs within an explicit transaction, the update is
considered part of the transaction. If the transaction commits, any
updates included with the transaction also commit. If the
transaction aborts, any updates included with the transaction are
rolled back. Updates through the same cursor that occurred
outside the aborted transaction are not affected.

• If updates through a cursor occur within an explicit (and client-
specified) transaction, Adaptive Server does not commit them
when the cursor is closed. It commits or rolls back pending
updates only when the transaction associated with that cursor
ends.

• A transaction commit or abort has no effect on SQL cursor
statements that do not manipulate result rows, such as declare
cursor, open cursor, close cursor, set cursor rows, and deallocate cursor. For
example, if the client opens a cursor within a transaction, and the
transaction aborts, the cursor remains open after the abort (unless
the close on endtran is set or the chained mode is used).

Issues to Consider When Using Transactions

You should consider the following issues when using transactions in
your applications:

• A rollback statement, without a transaction or savepoint name,
always rolls back statements to the outermost begin transaction
(explicit or implicit) statement and cancels the transaction. If
there is no current transaction when you issue rollback, the
statement has no effect.

In triggers or stored procedures, rollback statements, without
transaction or savepoint names, roll back all statements to the
outermost begin transaction (explicit or implicit).

• rollback does not produce any messages to the user. If warnings are
needed, use raiserror or print statements.

• Grouping a large number of Transact-SQL commands into one
long-running transaction may affect recovery time. If Adaptive
Server fails during a long transaction, recovery time increases,
since Adaptive Server must first undo the entire transaction.

• You can refer to as many as eight databases within a transaction.
However, Adaptive Server may refer to internal databases to



Transact-SQL User’s Guide 18-31

Adaptive Server Enterprise Release 11.5.x Backup and Recovery of Transactions

process a transaction, so the number of databases you can
actually refer to may be lower. Adaptive Server displays an error
message if you exceed the open databases limit.

• A remote procedure call (RPC) is executed independently from
any transaction in which it is included. In a standard transaction
(one that does not use Open Client DB-Library/C two-phase
commit), commands executed via an RPC by a remote server are
not rolled back with rollback and do not depend on commit to be
executed.

• Transactions cannot span more than one connection between a
client application and a server. For example, a
DB-Library/C application cannot group SQL statements in a
transaction across multiple open DBPROCESSes.

Backup and Recovery of Transactions

Every change to a database, whether it is the result of a single update
statement or a grouped set of SQL statements, is recorded in the
system table syslogs. This table is called the transaction log.

Some commands that change the database are not logged, such as
truncate table, bulk copy into a table that has no indexes, select into,
writetext, and dump transaction with no_log.

The transaction log records update, insert, or delete statements on a
moment-to-moment basis. When a transaction begins, a begin
transaction event is recorded in the log. As each data modification
statement is received, it is recorded in the log.

The change is always recorded in the log before any change is made
in the database itself. This type of log, called a write-ahead log,
ensures that the database can be recovered completely in case of a
failure.

Failures can be due to hardware or media problems, system software
problems, application software problems, program-directed
cancellations of transactions, or a user decision to cancel the
transaction.

In case of any of these failures, the transaction log can be played back
against a copy of the database restored from a backup made with the
dump commands.

To recover from a failure, transactions that were in progress but not
yet committed at the time of the failure must be undone, because a
partial transaction is not an accurate change. Completed transactions



18-32 Transactions: Maintaining Data Consistency and Recovery

Backup and Recovery of Transactions Adaptive Server Enterprise Release 11.5.x

must be redone if there is no guarantee that they have been written
to the database device.

If there are active, long-running transactions that are not committed
when Adaptive Server fails, undoing the changes may require as
much time as the transactions have been running. Such cases include
transactions that do not contain a commit transaction or rollback transaction
to match a begin transaction. This prevents Adaptive Server from
writing any changes and increases recovery time.

Adaptive Server’s dynamic dump allows the database and
transaction log to be backed up while use of the database continues.
Make frequent backups of your database transaction log. The more
often you back up your data, the less work will be lost if a system
failure occurs.

The owner of each database or a user with the ss_oper role is
responsible for backing up the database and its transaction log with
the dump commands, though permission to execute them can be
transferred to other users. Permission to use the load commands,
however, defaults to the Database Owner and cannot be transferred.

Once the appropriate load commands are issued, Adaptive Server
handles all aspects of the recovery process. Adaptive Server also
controls the checkpoint interval, which is the point at which all data
pages that have been changed are guaranteed to have been written to
the database device. Users can force a checkpoint, if necessary, with
the checkpoint command.

For more information about backup and recovery, see the Adaptive
Server Reference Manual and the System Administration Guide.



Transact-SQL User’s Guide A-1

A The pubs2 Database A.

This appendix describes the sample database pubs2. This database
contains the tables publishers, authors, titles, titleauthor, au_pix,
salesdetail, sales, stores, discounts, roysched, and blurbs.

The pubs2 database also contains primary and foreign keys, rules,
defaults, views, triggers, and stored procedures.

A diagram of the pubs2 database appears in Figure A-1 on page A-27.

For information about installing pubs2, see the configuration guide
for your platform.

Tables in the pubs2 Database

The following tables describe each pubs2 table. Each column header
specifies the column name, its datatype (including any user-defined
datatypes), and its null or not null status. The column header also
specifies any defaults, rules, triggers, and indexes that affect the
column.

publishers Table

publishers is defined as follows:

create table publishers
(pub_id char(4) not null,
pub_name varchar(40) not null,
city varchar(20) null,
state char(2) null)

Its primary key is pub_id:

sp_primarykey publishers, pub_id

Its pub_idrule rule is defined as:

create rule pub_idrule
as @pub_id in
("1389", "0736", "0877", "1622", "1756")
or @pub_id like "99[0-9][0-9]"



A-2 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

Table A-1 lists the contents of publishers:

authors Table

authors is defined as follows:

create table authors
(au_id id not null,
au_lname varchar(40) not null,
au_fname varchar(20) not null,
phone char(12) not null,
address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode char(10) null)

Its primary key is au_id:

sp_primarykey authors, au_id

Its nonclustered index for the au_lname and au_fname columns is
defined as:

create nonclustered index aunmind
on authors (au_lname, au_fname)

The phone column has the following default:

create default phonedflt as "UNKNOWN"

sp_bindefault phonedft, "authors.phone"

The following view uses authors:

create view titleview
as
select title, au_ord, au_lname,
price, total_sales, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id

Table A-1: publishers table

pub_id pub_name city state

0736 New Age Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA



Transact-SQL User’s Guide A-3

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

Table A-2 lists the contents of authors:

Table A-2: authors table

au_id au_-
lname

au_
fname

phone address city state coun-
try

post-
alcode

172-32-
1176

White Johnson 408 496-
7223

10932 Bigge Rd. Menlo Park CA USA 94025

213-46-
8915

Green Marjorie 510 986-
7020

309 63rd St. #411 Oakland CA USA 94618

238-95-
7766

Carson Cheryl 510 548-
7723

589 Darwin Ln. Berkeley CA USA 94705

267-41-
2394

O’Leary Michael 408 286-
2428

22 Cleveland
Av. #14

San Jose CA USA 95128

274-80-
9391

Straight Dick 510 834-
2919

5420 College Av. Oakland CA USA 94609

341-22-
1782

Smith Meander 913 843-
0462

10 Mississippi
Dr.

Lawrence KS USA 66044

409-56-
7008

Bennet Abraham 510 658-
9932

6223 Bateman
St.

Berkeley CA USA 94705

427-17-
2319

Dull Ann 415 836-
7128

3410 Blonde St. Palo Alto CA USA 94301

472-27-
2349

Gringlesby Burt 707 938-
6445

PO Box 792 Covelo CA USA 95428

486-29-
1786

Locksley Chastity 415 585-
4620

18 Broadway
Av.

San
Francisco

CA USA 94130

527-72-
3246

Greene Morningst
ar

615 297-
2723

22 Graybar
House Rd.

Nashville TN USA 37215

648-92-
1872

Blotchet-
Halls

Reginald 503 745-
6402

55 Hillsdale Bl. Corvallis OR USA 97330

672-71-
3249

Yokomoto Akiko 415 935-
4228

3 Silver Ct. Walnut
Creek

CA USA 94595

712-45-
1867

del Castillo Innes 615 996-
8275

2286 Cram Pl.
#86

Ann Arbor MI USA 48105

722-51-
5454

DeFrance Michel 219 547-
9982

3 Balding Pl. Gary IN USA 46403

724-08-
9931

Stringer Dirk 510 843-
2991

5420 Telegraph
Av.

Oakland CA USA 94609

724-80-
9391

MacFeather Stearns 510 354-
7128

44 Upland Hts. Oakland CA USA 94612

756-30-
7391

Karsen Livia 510 534-
9219

5720 McAuley
St.

Oakland CA USA 94609

807-91-
6654

Panteley Sylvia 301 946-
8853

1956 Arlington
Pl.

Rockville MD USA 20853



A-4 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

titles Table

titles is defined as follows:

create table titles
(title_id tid not null,
title varchar(80) not null,
type char(12) not null,
pub_id char(4) null,
price money null,
advance money null,
total_sales int null,
notes varchar(200) null,
pubdate datetime not null,
contract bit not null)

Its primary key is title_id:

sp_primarykey titles, title_id

Its pub_id column is a foreign key to the publishers table:

sp_foreignkey titles, publishers, pub_id

Its nonclustered index for the title column is defined as:

create nonclustered index titleind
on titles (title)

Its title_idrule is defined as:

create rule title_idrule
as
@title_id like "BU[0-9][0-9][0-9][0-9]" or
@title_id like "[MT]C[0-9][0-9][0-9][0-9]" or
@title_id like "P[SC][0-9][0-9][0-9][0-9]" or
@title_id like "[A-Z][A-Z]xxxx" or
@title_id like "[A-Z][A-Z]yyyy"

846-92-
7186

Hunter Sheryl 415 836-
7128

3410 Blonde St. Palo Alto CA USA 94301

893-72-
1158

McBadden Heather 707 448-
4982

301 Putnam Vacaville CA USA 95688

899-46-
2035

Ringer Anne 801 826-
0752

67 Seventh Av. Salt Lake
City

UT USA 84152

998-72-
3567

Ringer Albert 801 826-
0752

67 Seventh Av. Salt Lake
City

UT USA 84152

Table A-2: authors table (continued)

au_id au_-
lname

au_
fname

phone address city state coun-
try

post-
alcode



Transact-SQL User’s Guide A-5

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

The type column has the following default:

create default typedflt as "UNDECIDED"

sp_bindefault typedflt, "titles.type"

The pubdate column has this default:

create default datedflt as getdate()

sp_bindefault datedflt, "titles.pubdate"

titles uses the following trigger:

create trigger deltitle
on titles
for delete
as
if (select count(*) from deleted, salesdetail
where salesdetail.title_id = deleted.title_id) >0
begin
   rollback transaction
   print "You can't delete a title with sales."
end

The following view uses titles:

create view titleview
as
select title, au_ord, au_lname,
price, total_sales, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id

Table A-3 lists the contents of titles:

Table A-3: titles table

title-
_id

title type pub-
_id

price ad-
vance

total_-
sales

notes pub-
date

con-
tract

BU1032 The Busy
Executive’s
Database
Guide

business 1389 19.99 5000.00 4095 An
overview
of
available
database
systems
with
emphasis
on
common
business
applica-
tions.
Illustrated.

Jun 12,
1986

1



A-6 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

BU1111 Cooking
with
Computers:
Surrepti-
tious
Balance
Sheets

business 1389 11.95 5000.00 3876 Helpful
hints on
how to
use your
electronic
resources
to the best
advantage.

Jun 9,
1988

1

BU2075 You Can
Combat
Computer
Stress!

business 0736 2.99 10125.00 18722 The latest
medical
and
psycho-
logical
techniques
for living
with the
electronic
office.
Easy-to-
under-
stand
explana-
tions.

Jun 30,
1985

1

BU7832 Straight
Talk About
Computers

business 1389 19.99 5000.00 4095 Annotated
analysis of
what
computers
can do for
you: a no-
hype
guide for
the critical
user.

Jun 22,
1987

1

MC2222 Silicon
Valley
Gastro-
nomic
Treats

mod_-
cook

0877 19.99 0.00 2032 Favorite
recipes for
quick,
easy, and
elegant
meals;
tried and
tested by
people
who never
have time
to eat, let
alone
cook.

Jun 9,
1989

1

Table A-3: titles table (continued)

title-
_id

title type pub-
_id

price ad-
vance

total_-
sales

notes pub-
date

con-
tract



Transact-SQL User’s Guide A-7

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

MC3021 The
Gourmet
Microwave

mod_-
cook

0877 2.99 15000.00 22246 Traditional
French
gourmet
recipes
adapted
for
modern
micro-
wave
cooking.

Jun 18,
1985

1

PC1035 But Is It
User
Friendly?

popular_
comp

1389 22.95 7000.00 8780 A survey
of
software
for the
naive
user,
focusing
on the
“friendli-
ness” of
each.

Jun 30,
1986

1

MC3026 The
Psychology
 of
Computer
Cooking

UNDE-
CIDED

0877 NULL NULL NULL NULL Jul 24,
1991

0

PC8888 Secrets of
Silicon
Valley

popular_
comp

1389 20.00 8000.00 4095 Muckrak-
ing
reporting
by two
courag-
eous
women on
the
world’s
largest
computer
hardware
and
software
manufact-
urers.

Jun 12,
1987

1

PC9999 Net
Etiquette

popular_
comp

1389 NULL NULL NULL A must-
read for
computer
conferenc-
ing debu-
tantes!

Jul 24,
1996

0

Table A-3: titles table (continued)

title-
_id

title type pub-
_id

price ad-
vance

total_-
sales

notes pub-
date

con-
tract



A-8 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

PS1372 Computer
Phobic and
Non-
Phobic
Individ-
uals:
Behavior
Variations

psycho-
logy

0877 21.59 7000.00 375 A must
for the
specialist,
this book
examines
the
difference
between
those who
hate and
fear
computers
and those
who think
they are
swell.

Oct
21,1990

1

PS2091 Is Anger
the Enemy?

psycho-
logy

0736 10.95 2275.00 2045 Carefully
researched
study of
the effects
of strong
emotions
on the
body.
Metabolic
charts
included.

Jun 15,
1989

1

PS2106 Life
Without
Fear

psycho-
logy

0736 7.00 6000.00 111 New
exercise,
meditat-
ion, and
nutritional
techniques
that can
reduce the
shock of
daily inter-
actions.
Popular
audience.
Sample
menus
included.
Exercise
video
available
separately.

Oct 5,
1990

1

Table A-3: titles table (continued)

title-
_id

title type pub-
_id

price ad-
vance

total_-
sales

notes pub-
date

con-
tract



Transact-SQL User’s Guide A-9

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

PS3333 Prolonged
Data
Depriva-
tion: Four
Case
Studies

psycho-
logy

0736 19.99 2000.00 4072 What
happens
when the
data runs
dry?
Searching
evaluat-
ions of
informat-
ion-
shortage
effects on
heavy
users.

Jun 12,
1988

1

PS7777 Emotional
Security: A
New
Algorithm

psycho-
logy

0736 7.99 4000.00 3336 Protecting
yourself
and your
loved
ones from
undue
emotional
stress in
the
modern
world.
Use of
computer
and
nutritional
aids
empha-
sized.

Jun 12,
1988

1

TC3218 Onions,
Leeks, and
Garlic:
Cooking
Secrets of
the
Mediterra-
nean

trad_cook 0877 20.95 7000.00 375 Profusely
illustrated
in color,
this
makes a
wonderful
gift book
for a
cuisine-
oriented
friend.

Oct 21,
1990

1

Table A-3: titles table (continued)

title-
_id

title type pub-
_id

price ad-
vance

total_-
sales

notes pub-
date

con-
tract



A-10 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

titleauthor Table

titleauthor is defined as follows:

create table titleauthor
(au_id id not null,
title_id tid not null,
au_ord tinyint null,
royaltyper int null)

Its primary keys are au_id and title_id:

sp_primarykey titleauthor, au_id, title_id

TC4203 Fifty Years
in Bucking-
ham Palace
Kitchens

trad_cook 0877 11.95 4000.00 15096 More
anecdotes
from the
Queen’s
favorite
cook
describing
life among
English
royalty.
Recipes,
tech-
niques,
tender
vignettes.

Jun 12,
1985

1

TC7777 Sushi,
Anyone?

trad_cook 0877 14.99 8000.00 4095 Detailed
instruc-
tions on
improving
your
position
in life by
learning
how to
make
authentic
Japanese
sushi in
your
spare
time. 5-
10%
increase in
number of
friends
per recipe
reported
from beta
test.

Jun 12,
1987

1

Table A-3: titles table (continued)

title-
_id

title type pub-
_id

price ad-
vance

total_-
sales

notes pub-
date

con-
tract



Transact-SQL User’s Guide A-11

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

Its title_id and au_id columns are foreign keys to titles and authors:

sp_foreignkey titleauthor, titles, title_id

sp_foreignkey titleauthor, authors, au_id

Its nonclustered index for the au_id column is defined as:

create nonclustered index auidind
on titleauthor(au_id)

Its nonclustered index for the title_id column is defined as:

create nonclustered index titleidind
on titleauthor(title_id)

The following view uses titleauthor:

create view titleview
as
select title, au_ord, au_lname,
price, total_sales, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id

The following procedure uses titleauthor:

create procedure byroyalty @percentage int
as
select au_id from titleauthor
where titleauthor.royaltyper = @percentage

Table A-4 lists the contents of titleauthor:

Table A-4: titleauthor table

au_id title_id au_ord royaltyper

172-32-1176 PS3333 1 100

213-46-8915 BU1032 2 40

213-46-8915 BU2075 1 100

238-95-7766 PC1035 1 100

267-41-2394 BU1111 2 40

267-41-2394 TC7777 2 30

274-80-9391 BU7832 1 100

409-56-7008 BU1032 1 60

427-17-2319 PC8888 1 50

472-27-2349 TC7777 3 30



A-12 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

salesdetail Table

salesdetail is defined as follows:

create table salesdetail
(stor_id char(4) not null,
ord_num numeric(6,0),
title_id tid not null,
qty smallint not null,
discount float not null)

Its primary keys are stor_id and ord_num:

sp_primarykey salesdetail, stor_id, ord_num

Its title_id, stor_id, and ord_num columns are foreign keys to titles and
sales:

sp_foreignkey salesdetail, titles, title_id

sp_foreignkey salesdetail, sales, stor_id, ord_num

Its nonclustered index for the title_id column is defined as:

486-29-1786 PC9999 1 100

486-29-1786 PS7777 1 100

648-92-1872 TC4203 1 100

672-71-3249 TC7777 1 40

712-45-1867 MC2222 1 100

722-51-5454 MC3021 1 75

724-80-9391 BU1111 1 60

724-80-9391 PS1372 2 25

756-30-7391 PS1372 1 75

807-91-6654 TC3218 1 100

846-92-7186 PC8888 2 50

899-46-2035 MC3021 2 25

899-46-2035 PS2091 2 50

998-72-3567 PS2091 1 50

998-72-3567 PS2106 1 100

Table A-4: titleauthor table (continued)

au_id title_id au_ord royaltyper



Transact-SQL User’s Guide A-13

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

create nonclustered index titleidind
on salesdetail (title_id)

Its nonclustered index for the stor_id column is defined as:

create nonclustered index salesdetailind
on salesdetail (stor_id)

Its title_idrule rule is defined as:

create rule title_idrule
as
@title_id like "BU[0-9][0-9][0-9][0-9]" or
@title_id like "[MT]C[0-9][0-9][0-9][0-9]" or
@title_id like "P[SC][0-9][0-9][0-9][0-9]" or
@title_id like "[A-Z][A-Z]xxxx" or
@title_id like "[A-Z][A-Z]yyyy"

salesdetail uses the following trigger:

create trigger totalsales_trig on salesdetail
    for insert, update, delete
as
/* Save processing:  return if there are no rows affected */
if @@rowcount = 0
    begin
       return
end
/* add all the new values */
/* use isnull:  a null value in the titles table means
**              "no sales yet" not "sales unknown"
*/
update titles
    set total_sales = isnull(total_sales, 0) + (select sum(qty)
    from inserted
    where titles.title_id = inserted.title_id)
    where title_id in (select title_id from inserted)
/* remove all values being deleted or updated */
update titles
    set total_sales = isnull(total_sales, 0) - (select sum(qty)
    from deleted
    where titles.title_id = deleted.title_id)
    where title_id in (select title_id from deleted)

Table A-5 lists the contents of salesdetail:

Table A-5: salesdetail table

stor_id ord_num title_id qty discount

7896 234518 TC3218 75 40.000000
7896 234518 TC7777 75 40.000000
7131 Asoap432 TC3218 50 40.000000



A-14 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

7131 Asoap432 TC7777 80 40.000000
5023 XS-135-DER-432-8J2 TC3218 85 40.000000
8042 91-A-7 PS3333 90 45.000000
8042 91-A-7 TC3218 40 45.000000
8042 91-A-7 PS2106 30 45.000000
8042 91-V-7 PS2106 50 45.000000
8042 55-V-7 PS2106 31 45.000000
8042 91-A-7 MC3021 69 45.000000
5023 BS-345-DSE-860-1F2 PC1035 1000 46.700000
5023 AX-532-FED-452-2Z7 BU2075 500 46.700000
5023 AX-532-FED-452-2Z7 BU1032 200 46.700000
5023 AX-532-FED-452-2Z7 BU7832 150 46.700000
5023 AX-532-FED-452-2Z7 PS7777 125 46.700000
5023 NF-123-ADS-642-9G3 TC7777 1000 46.700000
5023 NF-123-ADS-642-9G3 BU1032 1000 46.700000
5023 NF-123-ADS-642-9G3 PC1035 750 46.700000
7131 Fsoap867 BU1032 200 46.700000
7066 BA52498 BU7832 100 46.700000
7066 BA71224 PS7777 200 46.700000
7066 BA71224 PC1035 300 46.700000
7066 BA71224 TC7777 350 46.700000
5023 ZD-123-DFG-752-9G8 PS2091 1000 46.700000
7067 NB-3.142 PS2091 200 46.700000
7067 NB-3.142 PS7777 250 46.700000
7067 NB-3.142 PS3333 345 46.700000
7067 NB-3.142 BU7832 360 46.700000
5023 XS-135-DER-432-8J2 PS2091 845 46.700000
5023 XS-135-DER-432-8J2 PS7777 581 46.700000
5023 ZZ-999-ZZZ-999-0A0 PS1372 375 46.700000
7067 NB-3.142 BU1111 175 46.700000
5023 XS-135-DER-432-8J2 BU7832 885 46.700000
5023 ZD-123-DFG-752-9G8 BU7832 900 46.700000
5023 AX-532-FED-452-2Z7 TC4203 550 46.700000
7131 Fsoap867 TC4203 350 46.700000
7896 234518 TC4203 275 46.700000
7066 BA71224 TC4203 500 46.700000
7067 NB-3.142 TC4203 512 46.700000
7131 Fsoap867 MC3021 400 46.700000
5023 AX-532-FED-452-2Z7 PC8888 105 46.700000
5023 NF-123-ADS-642-9G3 PC8888 300 46.700000
7066 BA71224 PC8888 350 46.700000
7067 NB-3.142 PC8888 335 46.700000

Table A-5: salesdetail table (continued)

stor_id ord_num title_id qty discount



Transact-SQL User’s Guide A-15

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

7131 Asoap432 BU1111 500 46.700000
7896 234518 BU1111 340 46.700000
5023 AX-532-FED-452-2Z7 BU1111 370 46.700000
5023 ZD-123-DFG-752-9G8 PS3333 750 46.700000
8042 13-J-9 BU7832 300 51.700000
8042 13-E-7 BU2075 150 51.700000
8042 13-E-7 BU1032 300 51.700000
8042 13-E-7 PC1035 400 51.700000
8042 91-A-7 PS7777 180 51.700000
8042 13-J-9 TC4203 250 51.700000
8042 13-E-7 TC4203 226 51.700000
8042 13-E-7 MC3021 400 51.700000
8042 91-V-7 BU1111 390 51.700000
5023 AB-872-DEF-732-2Z1 MC3021 5000 50.000000
5023 NF-123-ADS-642-9G3 PC8888 2000 50.000000
5023 NF-123-ADS-642-9G3 BU2075 2000 50.000000
5023 GH-542-NAD-713-9F9 PC1035 2000 50.000000
5023 ZA-000-ASD-324-4D1 PC1035 2000 50.000000
5023 ZA-000-ASD-324-4D1 PS7777 1500 50.000000
5023 ZD-123-DFG-752-9G8 BU2075 3000 50.000000
5023 ZD-123-DFG-752-9G8 TC7777 1500 50.000000
5023 ZS-645-CAT-415-1B2 BU2075 3000 50.000000
5023 ZS-645-CAT-415-1B2 BU2075 3000 50.000000
5023 XS-135-DER-432-8J2 PS3333 2687 50.000000
5023 XS-135-DER-432-8J2 TC7777 1090 50.000000
5023 XS-135-DER-432-8J2 PC1035 2138 50.000000
5023 ZZ-999-ZZZ-999-0A0 MC2222 2032 50.000000
5023 ZZ-999-ZZZ-999-0A0 BU1111 1001 50.000000
5023 ZA-000-ASD-324-4D1 BU1111 1100 50.000000
5023 NF-123-ADS-642-9G3 BU7832 1400 50.000000
5023 BS-345-DSE-860-1F2 TC4203 2700 50.000000
5023 GH-542-NAD-713-9F9 TC4203 2500 50.000000
5023 NF-123-ADS-642-9G3 TC4203 3500 50.000000
5023 BS-345-DSE-860-1F2 MC3021 4500 50.000000
5023 AX-532-FED-452-2Z7 MC3021 1600 50.000000
5023 NF-123-ADS-642-9G3 MC3021 2550 50.000000
5023 ZA-000-ASD-324-4D1 MC3021 3000 50.000000
5023 ZS-645-CAT-415-1B2 MC3021 3200 50.000000
5023 BS-345-DSE-860-1F2 BU2075 2200 50.000000
5023 GH-542-NAD-713-9F9 BU1032 1500 50.000000
5023 ZZ-999-ZZZ-999-0A0 PC8888 1005 50.000000
7896 124152 BU2075 42 50.500000

Table A-5: salesdetail table (continued)

stor_id ord_num title_id qty discount



A-16 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

sales Table

sales is defined as follows:

create table sales
(stor_id char(4) not null,
ord_num varchar(20) not null,
date datetime not null)

Its primary keys are stor_id and ord_num:

sp_primarykey sales, stor_id, ord_num

Its stor_id column is a foreign key to stores:

7896 124152 PC1035 25 50.500000
7131 Asoap132 BU2075 35 50.500000
7067 NB-1.142 PC1035 34 50.500000
7067 NB-1.142 TC4203 53 50.500000
8042 12-F-9 BU2075 30 55.500000
8042 12-F-9 BU1032 94 55.500000
7066 BA27618 BU2075 200 57.200000
7896 124152 TC4203 350 57.200000
7066 BA27618 TC4203 230 57.200000
7066 BA27618 MC3021 200 57.200000
7131 Asoap132 MC3021 137 57.200000
7067 NB-1.142 MC3021 270 57.200000
7067 NB-1.142 BU2075 230 57.200000
7131 Asoap132 BU1032 345 57.200000
7067 NB-1.142 BU1032 136 57.200000
8042 12-F-9 TC4203 300 62.200000
8042 12-F-9 MC3021 270 62.200000
8042 12-F-9 PC1035 133 62.200000
5023 AB-123-DEF-425-1Z3 TC4203 2500 60.500000
5023 AB-123-DEF-425-1Z3 BU2075 4000 60.500000
6380 342157 BU2075 200 57.200000
6380 342157 MC3021 250 57.200000
6380 356921 PS3333 200 46.700000
6380 356921 PS7777 500 46.700000
6380 356921 TC3218 125 46.700000
6380 234518 BU2075 135 46.700000
6380 234518 BU1032 320 46.700000
6380 234518 TC4203 300 46.700000
6380 234518 MC3021 400 46.700000

Table A-5: salesdetail table (continued)

stor_id ord_num title_id qty discount



Transact-SQL User’s Guide A-17

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

sp_foreignkey sales, stores, stor_id

Table A-6 lists the contents of sales:

Table A-6: sales table

stor_id ord_num date

5023 AB-123-DEF-425-1Z3 Oct 31 1995

5023 AB-872-DEF-732-2Z1 Nov 6 1995

5023 AX-532-FED-452-2Z7 Dec 1 1996

5023 BS-345-DSE-860-1F2 Dec 12 1996

5023 GH-542-NAD-713-9F9 Feb 15 1997

5023 NF-123-ADS-642-9G3 Mar 18 1997

5023 XS-135-DER-432-8J2 Mar 21 1997

5023 ZA-000-ASD-324-4D1 Jul 27 1994

5023 ZD-123-DFG-752-9G8 Mar 21 1997

5023 ZS-645-CAT-415-1B2 Mar 21 1997

5023 ZZ-999-ZZZ-999-0A0 Mar 21 1997

6380 342157 Dec 13 1994

6380 356921 Feb 17 1995

7066 BA27618 Oct 12 1996

7066 BA52498 Oct 27 1995

7066 BA71224 Aug 5 1996

7067 NB-1.142 Jan 2 1997

7067 NB-3.142 Jun 13 1995

7131 Asoap132 Nov 16 1996

7131 Asoap432 Dec 20 1995

7131 Fsoap867 Sep 8 1996

7896 124152 Aug 14 1996

7896 234518 Feb 14 1997

8042 12-F-9 Jul 13 1996

8042 13-E-7 May 23 1995

8042 13-J-9 Jan 13 1997

8042 55-V-7 Feb 20 1997

8042 91-A-7 Mar 20 1997



A-18 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

stores Table

stores is defined as follows:

create table stores
(stor_id char(4) not null,
stor_name varchar(40) not null,
stor_address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode char(10) null,
payterms varchar(12) null)

Its primary key is stor_id:

sp_primarykey stores, stor_id

Table A-7 lists the contents of stores:

8042 91-V-7 Mar 20 1997

Table A-7: stores table

stor-
_id

stor_-
name

stor_-
address

city state country
postal-
code

pay-
terms

7066 Barnum’s 567 Pasadena
Ave.

Tustin CA USA 92789 Net 30

7067 News & Brews 577 First St. Los Gatos CA USA 96745 Net 30

7131 Doc-U-Mat:
Quality Laundry
and Books

24-A Avrogado
Way

Remulade WA USA 98014 Net 60

8042 Bookbeat 679 Carson St. Portland OR USA 89076 Net 30

6380 Eric the Read
Books

788 Catamaugus
Ave.

Seattle WA USA 98056 Net 60

7896 Fricative
Bookshop

89 Madison St. Fremont CA USA 90019 Net 60

5023 Thoreau
Reading
Discount Chain

20435 Walden
Expressway

Concord MA USA 01776 Net 60

Table A-6: sales table (continued)

stor_id ord_num date



Transact-SQL User’s Guide A-19

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

roysched Table

roysched is defined as follows:

create table roysched
title_id tid not null,
lorange int null,
hirange int null,
royalty int null)

Its primary key is title_id:

sp_primarykey roysched, title_id

Its title_id column is a foreign key to titles:

sp_foreignkey roysched, titles, title_id

Its nonclustered index for the title_id column is defined as:

create nonclustered index titleidind
on roysched (title_id)

Table A-8 lists the contents of roysched:

Table A-8: roysched table

title_id lorange hirange royalty

BU1032 0 5000 10

BU1032 5001 50000 12

PC1035 0 2000 10

PC1035 2001 3000 12

PC1035 3001 4000 14

PC1035 4001 10000 16

PC1035 10001 50000 18

BU2075 0 1000 10

BU2075 1001 3000 12

BU2075 3001 5000 14

BU2075 5001 7000 16

BU2075 7001 10000 18

BU2075 10001 12000 20

BU2075 12001 14000 22

BU2075 14001 50000 24

PS2091 0 1000 10

PS2091 1001 5000 12

PS2091 5001 10000 14



A-20 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

PS2091 10001 50000 16

PS2106 0 2000 10

PS2106 2001 5000 12

PS2106 5001 10000 14

PS2106 10001 50000 16

MC3021 0 1000 10

MC3021 1001 2000 12

MC3021 2001 4000 14

MC3021 4001 6000 16

MC3021 6001 8000 18

MC3021 8001 10000 20

MC3021 10001 12000 22

MC3021 12001 50000 24

TC3218 0 2000 10

TC3218 2001 4000 12

TC3218 4001 6000 14

TC3218 6001 8000 16

TC3218 8001 10000 18

TC3218 10001 12000 20

TC3218 12001 14000 22

TC3218 14001 50000 24

PC8888 0 5000 10

PC8888 5001 10000 12

PC8888 10001 15000 14

PC8888 15001 50000 16

PS7777 0 5000 10

PS7777 5001 50000 12

PS3333 0 5000 10

PS3333 5001 10000 12

PS3333 10001 15000 14

PS3333 15001 50000 16

BU1111 0 4000 10

BU1111 4001 8000 12

BU1111 8001 10000 14

Table A-8: roysched table (continued)

title_id lorange hirange royalty



Transact-SQL User’s Guide A-21

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

BU1111 12001 16000 16

BU1111 16001 20000 18

BU1111 20001 24000 20

BU1111 24001 28000 22

BU1111 28001 50000 24

MC2222 0 2000 10

MC2222 2001 4000 12

MC2222 4001 8000 14

MC2222 8001 12000 16

MC2222 8001 12000 16

MC2222 12001 20000 18

MC2222 20001 50000 20

TC7777 0 5000 10

TC7777 5001 15000 12

TC7777 15001 50000 14

TC4203 0 2000 10

TC4203 2001 8000 12

TC4203 8001 16000 14

TC4203 16001 24000 16

TC4203 24001 32000 18

TC4203 32001 40000 20

TC4203 40001 50000 22

BU7832 0 5000 10

BU7832 5001 10000 12

BU7832 10001 15000 14

BU7832 15001 20000 16

BU7832 20001 25000 18

BU7832 25001 30000 20

BU7832 30001 35000 22

BU7832 35001 50000 24

PS1372 0 10000 10

PS1372 10001 20000 12

PS1372 20001 30000 14

PS1372 30001 40000 16

Table A-8: roysched table (continued)

title_id lorange hirange royalty



A-22 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

discounts Table

discounts is defined as follows:

create table discounts
(discounttype varchar(40) not null,
stor_id char(4) null,
lowqty smallint null,
highqty smallint null,
discount float not null)

Its primary keys are discounttype and stor_id:

sp_primarykey discounts, discounttype, stor_id

Its stor_id is a foreign key to stores:

sp_foreignkey discounts, stores, stor_id

Table A-9 lists the contents of discounts:

blurbs Table

blurbs is defined as follows:

create table blurbs
(au_id  id not null,
copy text null)

Its primary key is au_id:

sp_primarykey blurbs, au_id

Its au_id column is a foreign key to authors:

PS1372 40001 50000 18

Table A-9: discounts table

discounttype stor_id lowqty highqty discount

Initial Customer 8042 NULL NULL 10.5

Volume Discount NULL 100 1001 6.7

Huge Volume
Discount

NULL 1001 NULL 10

Customer Discount 8042 NULL NULL 5

Table A-8: roysched table (continued)

title_id lorange hirange royalty



Transact-SQL User’s Guide A-23

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

sp_foreignkey blurbs, authors, au_id

Table A-10 lists the contents of blurbs:

Table A-10: blurbs table

au_id copy

486-29-1786 If Chastity Locksley didn’t exist, this troubled world would have created her! Not
only did she master the mystic secrets of inner strength to conquer adversity when
she encountered it in life, but also, after “reinventing herself,” as she says, by writing
“Emotional Security: A New Algorithm” following the devastating loss of her cat,
Old Algorithm, she founded Publish or Perish, the page-by-page, day-by-day, write-
yourself-to-wellness encounter workshops franchise empire, the better to share her
inspiring discoveries with us all. Her “Net Etiquette,” a brilliant social treatise in its
own right and a fabulous pun, is the only civilized alternative to the gross etiquette
often practiced on the public networks.

648-92-1872 A chef’s chef and a raconteur’s raconteur, Reginald Blotchet-Halls calls London his
second home. “Th’ palace kitchen’s me first ‘ome, act’lly!” Blotchet-Halls’
astounding ability to delight our palates with palace delights is matched only by his
equal skill in satisfying our perpetual hunger for delicious back-stairs gossip by
serving up tidbits and entrees literally fit for a king!

998-72-3567 Albert Ringer was born in a trunk to circus parents, but another kind of circus trunk
played a more important role in his life years later. He grew up as an itinerant
wrestler and roustabout in the reknowned Ringer Brothers and Betty and Bernie’s
Circus. Once known in the literary world only as Anne Ringer’s wrestling brother,
he became a writer while recuperating from a near-fatal injury received during a
charity benefit bout with a gorilla. “Slingshotting” himself from the ring ropes,
Albert flew over the gorilla’s head and would have landed head first on the concrete.
He was saved from certain death by Nana, an elephant he had befriended as a child,
who caught him in her trunk. Nana held him so tightly that three ribs cracked and
he turned blue from lack of oxygen. “I was delirious. I had an out-of-body
experience! My whole life passed before me eyes. I promised myself ‘If I get through
this, I’ll use my remaining time to share what I learned out there.’ I owe it all to
Nana!”

899-46-2035 Anne Ringer ran away from the circus as a child. A university creative writing
professor and her family took Anne in and raised her as one of their own. In this
warm and television-less setting she learned to appreciate the great classics of
literature. The stream of aspiring and accomplished writers that flowed constantly
through the house confirmed her repudiation of the circus family she’d been born
into: “Barbarians!” The steadily growing recognition of her literary work was, to her,
vindication. When her brother’s brush with death brought them together after many
years, she took advantage of life’s crazy chance thing and broke the wall of anger
that she had constructed to separate them. Together they wrote, “Is Anger the
Enemy?” an even greater blockbuster than her other collaborative work, with Michel
DeFrance, “The Gourmet Microwave.”



A-24 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

au_pix Table

au_pix is defined as follows:

create table au_pix
(au_id char(11) not null,
pic image null,
format_type char(11) null,
bytesize int null,
pixwidth_hor char(14) null,
pixwidth_vert char(14) null)

Its primary key is au_id:

sp_primarykey au_pix, au_id

Its au_id column is a foreign key to authors:

sp_foreignkey au_pix, authors, au_id

672-71-3249 They asked me to write about myself and my book, so here goes: I started a
restaurant called “de Gustibus” with two of my friends. We named it that because
you really can’t discuss taste. We’re very popular with young business types because
we’re young business types ourselves. Whenever we tried to go out to eat in a group
we always got into these long tiresome negotiations: “I just ate Italian,” or “I ate
Greek yesterday,” or “I NEVER eat anything that’s not organic!” Inefficient. Not
what business needs today. So, it came to us that we needed a restaurant we could
all go to every day and not eat the same thing twice in a row maybe for a year! We
thought, “Hey, why make people choose one kind of restaurant over another, when
what they really want is a different kind of food?” At de Gustibus you can eat
Italian, Chinese, Japanese, Greek, Russian, Tasmanian, Iranian, and on and on all at
the same time. You never have to choose. You can even mix and match! We just
pooled our recipes, opened the doors, and never looked back. We’re a big hit, what
can I say? My recipes in “Sushi, Anyone?” are used at de Gustibus. They satisfy
crowds for us every day. They will work for you, too. Period!

409-56-7008 Bennet was the classic too-busy executive. After discovering computer databases, he
now has the time to run several successful businesses and sit on three major
corporate boards. Bennet also donates time to community service organizations.
Miraculously, he also finds time to write and market executive-oriented, in-depth
computer hardware and software reviews. “I’m hyperkinetic, so being dynamic and
fast-moving is a piece of cake. But being organized isn’t easy for me or for anyone I
know. There’s just one word for that: ‘databases!’ Databases can cure you or kill you.
If you get the right one, you can be like me. If you get the wrong one, watch out.
Read my book!”

Table A-10: blurbs table (continued)

au_id copy



Transact-SQL User’s Guide A-25

Adaptive Server Enterprise Release 11.5.x Tables in the pubs2 Database

Table A-11 lists the contents of au_pix:

The pic column contains binary data, which is not reproduced in its
entirety in this table. The pictures represented by this data are shown
on the next page. Since the image data (six pictures, two each in PICT,
TIF, and Sunraster file formats) is quite large, you should run the
installpix2 script only if you want to use or test the image datatype. The
image data is supplied to show how Sybase stores image data. Sybase
does not supply any tools for displaying image data: you must use the
appropriate screen graphics tools in order to display the images once
you have extracted them from the database.

Table A-11: au_pix table

au_id pic
format_-

type
bytesize

pixwidth_-
hor

pixwidth_-
vert

409-56-7008 0x0000... PICT 30220 626 635

486-29-1786 0x59a6... Sunraster 27931 647 640

648-92-1872 0x59a6... Sunraster 36974 647 640

672-71-3249 0x000a... PICT 13487 654 639

899-46-2035 0x4949... TIF 52023 648 641

998-72-3567 0x4949... TIF 52336 653 637



A-26 The pubs2 Database

Tables in the pubs2 Database Adaptive Server Enterprise Release 11.5.x

672-71-3249Akiko Yokomoto

899-46-2035Anne Ringer

409-56-7008Abraham Bennet 648-92-1872Reginald Blotchet-Halls

998-72-3567Albert Ringer

486-29-1786Chastity Locksley

Author Portraits from the au_pix Table



Transact-SQL User’s Guide A-27

Adaptive Server Enterprise Release 11.5.x Diagram of the pubs2 Database

Diagram of the pubs2 Database

Figure A-1: Diagram of the pubs2 database

1 au_id

1 au_id

stor_id stor_id

1 1

N title_id

1 title_id

N stor_id

1 stor_id
N stor_id

1 stor_id

N au_id

1 au_id

1 au_id

1 au_id

stor_id stor_id
ord_num ord_num

N 1

pub_id pub_id

N 1

title_id title_id

N 1

title_id title_id

1 N

AUTHORS
au_id

au_lname

au_fname

phone

address

city

state

country

postalcode

AU_PIX
au_id

pic

format_type

bytesize

pixwidth_hor

pixwidth_vert

BLURBS
au_id

copy

SALESDETAIL
stor_id

ord_num

title_id

qty

discount

DISCOUNTS
discounttype

stor_id

lowqty

highqty

discount

SALES
stor_id

ord_num

date

STORES
stor_id

stor_name

stor_address

city

state

country

postalcode

payterms

PUBLISHERS
pub_id

pub_name

city

state

ROYSCHED
title_id

lorange

hirange

royalty

TITLES
title_id

title

type

pub_id

price

advance

total_sales

notes

pubdate

contract

TITLEAUTHOR
au_id

title_id

au_ord

royaltyper



A-28 The pubs2 Database

Diagram of the pubs2 Database Adaptive Server Enterprise Release 11.5.x



Transact-SQL User’s Guide B-1

B The pubs3 Database B.

This chapter describes the sample database pubs3. This database
contains the tables publishers, authors, titles, titleauthor, salesdetail,
sales, stores, store_employees, discounts, roysched, and blurbs.

The pubs3 database also contains primary and foreign keys, rules,
defaults, views, triggers and stored procedures.

A diagram of the pubs3 database appears in Figure B-1 on page B-29.

For information about installing pubs3, see the configuration guide
for your platform.

Tables in the pubs3 Database

The following tables describe each pubs3 table. Each column header
specifies the column name, its datatype (including any user-defined
datatypes), its null or not null status, and how it uses referential
integrity. The column header also specifies any defaults, rules,
triggers, and indexes that affect the column are also specified in the
column header.

publishers Table

publishers is defined as follows:

create table publishers
(pub_id char(4) not null,
pub_name varchar(40) not null,
city varchar(20) null,
state char(2) null,
unique nonclustered (pub_id))

Its pub_idrule rule is defined as:

create rule pub_idrule
as @pub_id in
("1389", "0736", "0877", "1622", "1756")
or @pub_id like "99[0-9][0-9]"



B-2 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

Table B-1 lists the contents of publishers:

authors Table

authors is defined as follows:

create table authors
(au_id id not null,
au_lname varchar(40) not null,
au_fname varchar(20) not null,
phone char(12) not null,
address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode char(10) null,
unique nonclustered (au_id))

Its nonclustered index for the au_lname and au_fname columns is
defined as:

create nonclustered index aunmind
on authors (au_lname, au_fname)

The phone column has the following default:

create default phonedflt as "UNKNOWN"

sp_bindefault phonedft, "authors.phone"

The following view uses authors:

create view titleview
as
select title, au_ord, au_lname,
price, num_sold, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id

Table B-1: publishers table

pub_id pub_name city state

0736 New Age Books Boston MA

0877 Binnet & Hardley Washington DC

1389 Algodata Infosystems Berkeley CA



Transact-SQL User’s Guide B-3

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

Table B-2 lists the contents of authors:

Table B-2: authors table

au_id au_-
lname

au_
fname

phone address city state coun-
try

post-
alcode

172-32-
1176

White Johnson 408 496-
7223

10932 Bigge Rd. Menlo Park CA USA 94025

213-46-
8915

Green Marjorie 510 986-
7020

309 63rd St. #411 Oakland CA USA 94618

238-95-
7766

Carson Cheryl 510 548-
7723

589 Darwin Ln. Berkeley CA USA 94705

267-41-
2394

O’Leary Michael 408 286-
2428

22 Cleveland
Av. #14

San Jose CA USA 95128

274-80-
9391

Straight Dick 510 834-
2919

5420 College Av. Oakland CA USA 94609

341-22-
1782

Smith Meander 913 843-
0462

10 Mississippi
Dr.

Lawrence KS USA 66044

409-56-
7008

Bennet Abraham 510 658-
9932

6223 Bateman
St.

Berkeley CA USA 94705

427-17-
2319

Dull Ann 415 836-
7128

3410 Blonde St. Palo Alto CA USA 94301

472-27-
2349

Gringlesby Burt 707 938-
6445

PO Box 792 Covelo CA USA 95428

486-29-
1786

Locksley Chastity 415 585-
4620

18 Broadway
Av.

San
Francisco

CA USA 94130

527-72-
3246

Greene Morningst
ar

615 297-
2723

22 Graybar
House Rd.

Nashville TN USA 37215

648-92-
1872

Blotchet-
Halls

Reginald 503 745-
6402

55 Hillsdale Bl. Corvallis OR USA 97330

672-71-
3249

Yokomoto Akiko 415 935-
4228

3 Silver Ct. Walnut
Creek

CA USA 94595

712-45-
1867

del Castillo Innes 615 996-
8275

2286 Cram Pl.
#86

Ann Arbor MI USA 48105

722-51-
5454

DeFrance Michel 219 547-
9982

3 Balding Pl. Gary IN USA 46403

724-08-
9931

Stringer Dirk 510 843-
2991

5420 Telegraph
Av.

Oakland CA USA 94609

724-80-
9391

MacFeather Stearns 510 354-
7128

44 Upland Hts. Oakland CA USA 94612

756-30-
7391

Karsen Livia 510 534-
9219

5720 McAuley
St.

Oakland CA USA 94609

807-91-
6654

Panteley Sylvia 301 946-
8853

1956 Arlington
Pl.

Rockville MD USA 20853



B-4 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

titles Table

titles is defined as follows:

create table titles
(title_id tid not null,
title varchar(80) not null,
type char(12) not null,
pub_id char(4) null
    references publishers(pub_id),
price money null,
advance numeric(12,2) null,
num_sold int null,
notes varchar(200) null,
pubdate datetime not null,
contract bit not null,
unique nonclustered (title_id))

Its nonclustered index for the title column is defined as:

create nonclustered index titleind
on titles (title)

Its title_idrule is defined as:

create rule title_idrule
as
@title_id like "BU[0-9][0-9][0-9][0-9]" or
@title_id like "[MT]C[0-9][0-9][0-9][0-9]" or
@title_id like "P[SC][0-9][0-9][0-9][0-9]" or
@title_id like "[A-Z][A-Z]xxxx" or
@title_id like "[A-Z][A-Z]yyyy"

The type column has the following default:

create default typedflt as "UNDECIDED"

sp_bindefault typedflt, "titles.type"

846-92-
7186

Hunter Sheryl 415 836-
7128

3410 Blonde St. Palo Alto CA USA 94301

893-72-
1158

McBadden Heather 707 448-
4982

301 Putnam Vacaville CA USA 95688

899-46-
2035

Ringer Anne 801 826-
0752

67 Seventh Av. Salt Lake
City

UT USA 84152

998-72-
3567

Ringer Albert 801 826-
0752

67 Seventh Av. Salt Lake
City

UT USA 84152

Table B-2: authors table (continued)

au_id au_-
lname

au_
fname

phone address city state coun-
try

post-
alcode



Transact-SQL User’s Guide B-5

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

The pubdate column has this default:

create default datedflt as getdate()

sp_bindefault datedflt, "titles.pubdate"

titles uses the following trigger:

create trigger deltitle
on titles
for delete
as
if (select count(*) from deleted, salesdetail
where salesdetail.title_id = deleted.title_id) >0
begin
   rollback transaction
   print "You can't delete a title with sales."
end

The following view uses titles:

create view titleview
as
select title, au_ord, au_lname,
price, num_sold, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id

Table B-3 lists the contents of titles:

Table B-3: titles table

title-
_id

title type pub-
_id

price ad-
vance

num_-
sold

notes pub-
date

con-
tract

BU1032 The Busy
Executive’s
Database
Guide

business 1389 19.99 5000.00 4095 An
overview
of
available
database
systems
with
emphasis
on
common
business
applica-
tions.
Illustrated.

Jun 12,
1986

1



B-6 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

BU1111 Cooking
with
Computers:
 Surrepti-
tious
Balance
Sheets

business 1389 11.95 5000.00 3876 Helpful
hints on
how to
use your
electronic
resources
to the best
advantage.

Jun 9,
1988

1

BU2075 You Can
Combat
Computer
Stress!

business 0736 2.99 10125.00 18722 The latest
medical
and
psycho-
logical
techniques
for living
with the
electronic
office.
Easy-to-
under-
stand
explana-
tions.

Jun 30,
1985

1

BU7832 Straight
Talk About
Computers

business 1389 19.99 5000.00 4095 Annotated
analysis of
what
computers
can do for
you: a no-
hype
guide for
the critical
user.

Jun 22,
1987

1

MC2222 Silicon
Valley
Gastro-
nomic
Treats

mod_-
cook

0877 19.99 0.00 2032 Favorite
recipes for
quick,
easy, and
elegant
meals;
tried and
tested by
people
who never
have time
to eat, let
alone
cook.

Jun 9,
1989

1

Table B-3: titles table (continued)

title-
_id

title type pub-
_id

price ad-
vance

num_-
sold

notes pub-
date

con-
tract



Transact-SQL User’s Guide B-7

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

MC3021 The
Gourmet
Microwave

mod_-
cook

0877 2.99 15000.00 22246 Traditional
French
gourmet
recipes
adapted
for
modern
micro-
wave
cooking.

Jun 18,
1985

1

PC1035 But Is It
User
Friendly?

popular_
comp

1389 22.95 7000.00 8780 A survey
of
software
for the
naive
user,
focusing
on the
“friendli-
ness” of
each.

Jun 30,
1986

1

MC3026 The
Psychology
of
Computer
Cooking

UNDE-
CIDED

0877 NULL NULL NULL NULL Jul 24,
1991

0

PC8888 Secrets of
Silicon
Valley

popular_
comp

1389 20.00 8000.00 4095 Muck-
raking
reporting
by two
coura-
geous
women on
the
world’s
largest
computer
hardware
and
software
manufact-
urers.

Jun 12,
1987

1

PC9999 Net
Etiquette

popular_
comp

1389 NULL NULL NULL A must-
read for
computer
conferenc-
ing debu-
tantes!

Jul 24,
1996

0

Table B-3: titles table (continued)

title-
_id

title type pub-
_id

price ad-
vance

num_-
sold

notes pub-
date

con-
tract



B-8 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

PS1372 Computer
Phobic and
Non-
Phobic
Indivi-
duals:
Behavior
Variations

psycho-
logy

0877 21.59 7000.00 375 A must
for the
specialist,
this book
examines
the
difference
between
those who
hate and
fear
computers
and those
who think
they are
swell.

Oct
21,1990

1

PS2091 Is Anger
the Enemy?

psycho-
logy

0736 10.95 2275.00 2045 Carefully
researched
study of
the effects
of strong
emotions
on the
body.
Metabolic
charts
included.

Jun 15,
1989

1

PS2106 Life
Without
Fear

psycho-
logy

0736 7.00 6000.00 111 New
exercise,
medita-
tion, and
nutritional
techniques
that can
reduce the
shock of
daily inter-
actions.
Popular
audience.
Sample
menus
included.
Exercise
video
available
separately.

Oct 5,
1990

1

Table B-3: titles table (continued)

title-
_id

title type pub-
_id

price ad-
vance

num_-
sold

notes pub-
date

con-
tract



Transact-SQL User’s Guide B-9

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

PS3333 Prolonged
Data
Depriva-
tion: Four
Case
Studies

psycho-
logy

0736 19.99 2000.00 4072 What
happens
when the
data runs
dry?
Searching
evalua-
tions of
informa-
tion-
shortage
effects on
heavy
users.

Jun 12,
1988

1

PS7777 Emotional
Security: A
New
Algorithm

psycho-
logy

0736 7.99 4000.00 3336 Protecting
yourself
and your
loved
ones from
undue
emotional
stress in
the
modern
world.
Use of
computer
and
nutritional
aids
empha-
sized.

Jun 12,
1988

1

TC3218 Onions,
Leeks, and
Garlic:
Cooking
Secrets of
the
Mediterra-
nean

trad_cook 0877 20.95 7000.00 375 Profusely
illustrated
in color,
this
makes a
wonderful
gift book
for a
cuisine-
oriented
friend.

Oct 21,
1990

1

Table B-3: titles table (continued)

title-
_id

title type pub-
_id

price ad-
vance

num_-
sold

notes pub-
date

con-
tract



B-10 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

titleauthor Table

titleauthor is defined as follows:

create table titleauthor
(au_id id not null
    references authors(au_id),
title_id tid not null
    references titles(title_id),
au_ord tinyint null,
royaltyper int null)

TC4203 Fifty Years
in Bucking-
ham Palace
Kitchens

trad_cook 0877 11.95 4000.00 15096 More
anecdotes
from the
Queen’s
favorite
cook
describing
life among
English
royalty.
Recipes,
techni-
ques,
tender
vignettes.

Jun 12,
1985

1

TC7777 Sushi,
Anyone?

trad_cook 0877 14.99 8000.00 4095 Detailed
instruc-
tions on
improving
your
position
in life by
learning
how to
make
authentic
Japanese
sushi in
your
spare
time. 5-
10%
increase in
number of
friends
per recipe
reported
from beta
test.

Jun 12,
1987

1

Table B-3: titles table (continued)

title-
_id

title type pub-
_id

price ad-
vance

num_-
sold

notes pub-
date

con-
tract



Transact-SQL User’s Guide B-11

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

Its nonclustered index for the au_id column is defined as:

create nonclustered index auidind
on titleauthor(au_id)

Its nonclustered index for the title_id column is defined as:

create nonclustered index titleidind
on titleauthor(title_id)

The following view uses titleauthor:

create view titleview
as
select title, au_ord, au_lname,
price, num_sold, pub_id
from authors, titles, titleauthor
where authors.au_id = titleauthor.au_id
and titles.title_id = titleauthor.title_id

The following procedure uses titleauthor:

create procedure byroyalty @percentage int
as
select au_id from titleauthor
where titleauthor.royaltyper = @percentage

Table B-4 lists the contents of titleauthor:

Table B-4: titleauthor table

au_id title_id au_ord royaltyper

172-32-1176 PS3333 1 100

213-46-8915 BU1032 2 40

213-46-8915 BU2075 1 100

238-95-7766 PC1035 1 100

267-41-2394 BU1111 2 40

267-41-2394 TC7777 2 30

274-80-9391 BU7832 1 100

409-56-7008 BU1032 1 60

427-17-2319 PC8888 1 50

472-27-2349 TC7777 3 30

486-29-1786 PC9999 1 100

486-29-1786 PS7777 1 100

648-92-1872 TC4203 1 100



B-12 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

salesdetail Table

salesdetail is defined as follows:

create table salesdetail
(stor_id char(4) not null
    references sales(stor_id),
ord_num numeric(6,0)
    references sales(ord_num),
title_id tid not null
    references titles(title_id),
qty smallint not null,
discount float not null)

Its nonclustered index for the title_id column is defined as:

create nonclustered index titleidind
on salesdetail (title_id)

Its nonclustered index for the stor_id column is defined as:

create nonclustered index salesdetailind
on salesdetail (stor_id)

Its title_idrule rule is defined as:

672-71-3249 TC7777 1 40

712-45-1867 MC2222 1 100

722-51-5454 MC3021 1 75

724-80-9391 BU1111 1 60

724-80-9391 PS1372 2 25

756-30-7391 PS1372 1 75

807-91-6654 TC3218 1 100

846-92-7186 PC8888 2 50

899-46-2035 MC3021 2 25

899-46-2035 PS2091 2 50

998-72-3567 PS2091 1 50

998-72-3567 PS2106 1 100

Table B-4: titleauthor table (continued)

au_id title_id au_ord royaltyper



Transact-SQL User’s Guide B-13

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

create rule title_idrule
as
@title_id like "BU[0-9][0-9][0-9][0-9]" or
@title_id like "[MT]C[0-9][0-9][0-9][0-9]" or
@title_id like "P[SC][0-9][0-9][0-9][0-9]" or
@title_id like "[A-Z][A-Z]xxxx" or
@title_id like "[A-Z][A-Z]yyyy"

salesdetail uses the following trigger:

create trigger totalsales_trig on salesdetail
    for insert, update, delete
as
/* Save processing:  return if there are no rows affected */
if @@rowcount = 0
    begin
       return
end
/* add all the new values */
/* use isnull:  a null value in the titles table means
**              "no sales yet" not "sales unknown"
*/
update titles
    set num_sold = isnull(num_sold, 0) + (select sum(qty)
    from inserted
    where titles.title_id = inserted.title_id)
    where title_id in (select title_id from inserted)
/* remove all values being deleted or updated */
update titles
    set num_sold = isnull(num_sold, 0) - (select sum(qty)
    from deleted
    where titles.title_id = deleted.title_id)
    where title_id in (select title_id from deleted)

Table B-5 lists the contents of salesdetail:

Table B-5: salesdetail table

stor_id ord_num title_id qty discount

7896 100014 TC3218 75 40.000000
7896 100014 TC7777 75 40.000000
7131 100017 TC3218 50 40.000000
7131 100017 TC7777 80 40.000000
5023 100020 TC3218 85 40.000000
8042 100016 PS3333 90 45.000000
8042 100016 TC3218 40 45.000000
8042 100016 PS2106 30 45.000000
8042 100023 PS2106 50 45.000000
8042 100015 PS2106 31 45.000000



B-14 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

8042 100016 MC3021 69 45.000000
5023 100009 PC1035 1000 46.700000
5023 100007 BU2075 500 46.700000
5023 100007 BU1032 200 46.700000
5023 100007 BU7832 150 46.700000
5023 100007 PS7777 125 46.700000
5023 100018 TC7777 1000 46.700000
5023 100018 BU1032 1000 46.700000
5023 100018 PC1035 750 46.700000
7131 100004 BU1032 200 46.700000
7066 100012 BU7832 100 46.700000
7066 100021 PS7777 200 46.700000
7066 100021 PC1035 300 46.700000
7066 100021 TC7777 350 46.700000
5023 100025 PS2091 1000 46.700000
7067 100019 PS2091 200 46.700000
7067 100019 PS7777 250 46.700000
7067 100019 PS3333 345 46.700000
7067 100019 BU7832 360 46.700000
5023 100020 PS2091 845 46.700000
5023 100020 PS7777 581 46.700000
5023 100027 PS1372 375 46.700000
7067 100019 BU1111 175 46.700000
5023 100020 BU7832 885 46.700000
5023 100025 BU7832 900 46.700000
5023 100007 TC4203 550 46.700000
7131 100004 TC4203 350 46.700000
7896 100014 TC4203 275 46.700000
7066 100021 TC4203 500 46.700000
7067 100019 TC4203 512 46.700000
7131 100004 MC3021 400 46.700000
5023 100007 PC8888 105 46.700000
5023 100018 PC8888 300 46.700000
7066 100021 PC8888 350 46.700000
7067 100019 PC8888 335 46.700000
7131 100017 BU1111 500 46.700000
7896 100014 BU1111 340 46.700000
5023 100007 BU1111 370 46.700000
5023 100025 PS3333 750 46.700000
8042 100014 BU7832 300 51.700000
8042 100013 BU2075 150 51.700000
8042 100013 BU1032 300 51.700000

Table B-5: salesdetail table (continued)

stor_id ord_num title_id qty discount



Transact-SQL User’s Guide B-15

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

8042 100013 PC1035 400 51.700000
8042 100016 PS7777 180 51.700000
8042 100014 TC4203 250 51.700000
8042 100013 TC4203 226 51.700000
8042 100013 MC3021 400 51.700000
8042 100023 BU1111 390 51.700000
5023 100003 MC3021 5000 50.000000
5023 100018 PC8888 2000 50.000000
5023 100018 BU2075 2000 50.000000
5023 100010 PC1035 2000 50.000000
5023 100022 PC1035 2000 50.000000
5023 100022 PS7777 1500 50.000000
5023 100025 BU2075 3000 50.000000
5023 100025 TC7777 1500 50.000000
5023 100026 BU2075 3000 50.000000
5023 100026 BU2075 3000 50.000000
5023 100020 PS3333 2687 50.000000
5023 100020 TC7777 1090 50.000000
5023 100020 PC1035 2138 50.000000
5023 100027 MC2222 2032 50.000000
5023 100027 BU1111 1001 50.000000
5023 100022 BU1111 1100 50.000000
5023 100018 BU7832 1400 50.000000
5023 100009 TC4203 2700 50.000000
5023 100010 TC4203 2500 50.000000
5023 100018 TC4203 3500 50.000000
5023 100009 MC3021 4500 50.000000
5023 100007 MC3021 1600 50.000000
5023 100018 MC3021 2550 50.000000
5023 100022 MC3021 3000 50.000000
5023 100026 MC3021 3200 50.000000
5023 100009 BU2075 2200 50.000000
5023 100010 BU1032 1500 50.000000
5023 100027 PC8888 1005 50.000000
7896 100013 BU2075 42 50.500000
7896 100013 PC1035 25 50.500000
7131 100005 BU2075 35 50.500000
7067 100011 PC1035 34 50.500000
7067 100011 TC4203 53 50.500000
8042 100015 BU2075 30 55.500000
8042 100015 BU1032 94 55.500000
7066 100001 BU2075 200 57.200000

Table B-5: salesdetail table (continued)

stor_id ord_num title_id qty discount



B-16 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

sales Table

sales is defined as follows:

create table sales
(stor_id char(4) not null
    references stores(stor_id),
ord_num numeric(6,0) identity,
date datetime not null,
unique nonclustered (ord_num))

Table B-6 lists the contents of sales:

7896 100013 TC4203 350 57.200000
7066 100001 TC4203 230 57.200000
7066 100001 MC3021 200 57.200000
7131 100005 MC3021 137 57.200000
7067 100011 MC3021 270 57.200000
7067 100011 BU2075 230 57.200000
7131 100005 BU1032 345 57.200000
7067 100011 BU1032 136 57.200000
8042 100015 TC4203 300 62.200000
8042 100015 MC3021 270 62.200000
8042 100015 PC1035 133 62.200000
5023 100002 TC4203 2500 60.500000
5023 100002 BU2075 4000 60.500000
6380 100028 BU2075 200 57.200000
6380 100028 MC3021 250 57.200000
6380 100029 PS3333 200 46.700000
6380 100029 PS7777 500 46.700000
6380 100029 TC3218 125 46.700000
6380 100014 BU2075 135 46.700000
6380 100014 BU1032 320 46.700000
6380 100014 TC4203 300 46.700000
6380 100014 MC3021 400 46.700000

Table B-6: sales table

stor_id ord_num date

5023 100002 Oct 31 1995

5023 100003 Nov 6 1995

5023 100007 Dec 1 1996

Table B-5: salesdetail table (continued)

stor_id ord_num title_id qty discount



Transact-SQL User’s Guide B-17

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

5023 100009 Dec 12 1996

5023 100010 Feb 15 1997

5023 100018 Mar 18 1997

5023 100020 Mar 21 1997

5023 100022 Jul 27 1994

5023 100025 Mar 21 1997

5023 100026 Mar 21 1997

5023 100027 Mar 21 1997

6380 100028 Dec 13 1994

6380 100029 Feb 17 1995

7066 100001 Oct 12 1996

7066 100012 Oct 27 1995

7066 100021 Aug 5 1996

7067 100008 Jan 2 1997

7067 100024 Jun 13 1995

7131 100006 Nov 16 1996

7131 100011 Dec 20 1995

7131 100019 Sep 8 1996

7896 100005 Aug 14 1996

7896 100017 Feb 14 1997

8042 100004 Jul 13 1996

8042 100013 May 23 1995

8042 100014 Jan 13 1997

8042 100015 Feb 20 1997

8042 100016 Mar 20 1997

8042 100023 Mar 20 1997

Table B-6: sales table (continued)

stor_id ord_num date



B-18 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

stores Table

stores is defined as follows:

create table stores
(stor_id char(4) not null,
stor_name varchar(40) not null,
stor_address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode char(10) null,
payterms varchar(12) null,
unique nonclustered (stor_id))

Table B-7 lists the contents of stores:

Table B-7: stores table

stor-
_id

stor_-
name

stor_-
address

city state country
postal-
code

pay-
terms

7066 Barnum’s 567 Pasadena
Ave.

Tustin CA USA 92789 Net 30

7067 News & Brews 577 First St. Los Gatos CA USA 96745 Net 30

7131 Doc-U-Mat:
Quality Laundry
and Books

24-A Avrogado
Way

Remulade WA USA 98014 Net 60

8042 Bookbeat 679 Carson St. Portland OR USA 89076 Net 30

6380 Eric the Read
Books

788 Catamaugus
Ave.

Seattle WA USA 98056 Net 60

7896 Fricative
Bookshop

89 Madison St. Fremont CA USA 90019 Net 60

5023 Thoreau
Reading
Discount Chain

20435 Walden
Expressway

Concord MA USA 01776 Net 60



Transact-SQL User’s Guide B-19

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

store_employees Table

store_employees is defined as follows:

create table store_employees
(stor_id char(4) null
    references stores(stor_id),
emp_id id not null,
mgr_id id null
    references store_employees(emp_id),
emp_lname varchar(40) not null,
emp_fname varchar(20) not null,
phone char(12) null,
address varchar(40) null,
city varchar(20) null,
state char(2) null,
country varchar(12) null,
postalcode varchar(10) null,
unique nonclustered (emp_id))

Table B-8 lists the contents of store_employees:

Table B-8: store_employees table

stor-
_id

emp-
_id

mgr-
_id

emp_-
lname

emp_-
fname

phone address city state coun-
try

post-
al-

code

7066 415-92-
7301

415-92-
7301

Chichikov P. 619 336-
8978

20 Alfalfa
Ave.

Twenty-
nine
Palms

CA USA 92277

7066 202-93-
0009

415-92-
7301

Spindle-
shanks

Daisy 619 336-
8900

14 Wild
Cat Way

Twenty-
nine
Palms

CA USA 92277

7066 444-89-
2342

415-92-
7301

Ratsbane Ian 619 344-
92321

1827
Road-
runner Dr.

Twenty-
nine
Palms

CA USA 92278

7066 332-78-
2382

415-92-
7301

Bayless Chuck 619 777-
4356

7
Maynard
Dr.

Twenty-
nine
Palms

CA USA 92277

7066 898-00-
2383

415-92-
7301

Pumpion Tammy 619 222-
3434

10089
Lazy Joe
Ave.

Twenty-
nine
Palms

CA USA 92277

7066 222-90-
3737

415-92-
7301

Barnum Arthur 619 333-
3232

522
Lupine
Ave.

Twenty-
nine
Palms

CA USA 92277

7066 939-32-
1212

415-92-
7301

Ronald Bill 619 333-
4550

69 Coyote
Ct.

Twenty-
nine
Palms

CA USA 92277



B-20 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

7067 343-38-
9494

343-38-
9494

St.
Augustine

Fiona 408 222-
8383

17 Call of
the Wild
Rd.

Los
Gatos

CA USA 95030

7067 222-90-
3483

343-38-
9494

Sebastian Basil 408 334-
8928

29
Dharma
Rd.

Los
Gatos

CA USA 95030

7067 121-00-
3823

343-38-
9494

March-
main

Albin 408 343-
8934

1001 Top
of the Hill
Ct.

Los
Gatos

CA USA 95030

7067 232-29-
8938

343-38-
9494

Barlow Hilary 408 232-
3332

2 Topping
Way

Los
Gatos

CA USA 95032

7067 232-89-
9393

343-38-
9494

Dieuberi Gustav 408 675-
8938

30 Mount
Madonna
Rd.

Los
Gatos

CA USA 95030

7131 565-67-
3920

565-67-
3920

Lavator Marie 206 328-
2838

14 Peter
Grubb
Rd. SE

Renton WA USA 98058

7131 848-34-
4838

565-67-
3920

Sope Inez 206 438-
3434

1238
Index Ave.
SE

Renton WA USA 98058

7131 232-38-
2232

565-67-
3920

Tubb Wally 206 323-
2828

180
Moses
Lane S

Renton WA USA 98058

7131 111-90-
3283

565-67-
3920

Basin Chalker 206 323-
7777

192
Naches
Ave. N

Renton WA USA 98055

7131 323-32-
4444

565-67-
3920

Waters Johnny 206 323-
9020

1 Pelly
Ave. N

Renton WA USA 98055

7131 238-32-
0079

238-32-
0079

Scrubb Billy 206 444-
3232

90
Vashion
St. NE

Renton WA USA 98059

7131 349-00-
9393

565-67-
3920

Tuwel Terry 206 323-
3233

66 Sunset
Blvd. SW

Renton WA USA 98055

8042 723-99-
9329

723-99-
9329

Crook-
shank

Flannery 503 323-
9090

SW 222
Laber Ct.

Port-
land

OR USA 97236

8042 343-32-
0034

723-99-
9329

Sitwell Daven-
port

503 333-
9494

14 SE
Krause
Lane

Port-
land

OR USA 97236

8042 877-12-
9393

723-99-
9329

Bartholo-
mew

Curan 503 333-
9332

18 SE
Knee St.

Port-
land

OR USA 97266

8042 323-99-
0009

723-99-
9329

Yaddo Mary 503 333-
4844

NE
Klickitat
St.

Port-
land

OR USA 97212

Table B-8: store_employees table (continued)

stor-
_id

emp-
_id

mgr-
_id

emp_-
lname

emp_-
fname

phone address city state coun-
try

post-
al-

code



Transact-SQL User’s Guide B-21

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

8042 434-94-
3203

723-99-
9329

Peacock Mavis 503 494-
3413

4978 SW
Huns Rd.

Port-
land

OR USA 97223

8042 232-94-
5885

723-99-
9329

Baldwin Dorothy 503 333-
9494

9 N.
Image
Canoe
Ave.

Port-
land

OR USA 97217

8042 323-09-
5872

723-99-
9329

Corbit P. 503 335-
3491

89 NW
Industry
St.

Port-
land

OR USA 97210

8042 323-54-
3434

723-99-
9329

Pilkinton Faith 503 333-
4531

18 SW
Inez St.

Port-
land

OR USA 97224

8042 331-90-
8484

723-99-
9329

Botteghe Obscura 503 889-
2832

555 SW
Keerins
Ct.

Port-
land

OR USA 97223

8042 884-32-
8282

723-99-
9329

Martineau Tristan 503 323-
5954

346 N.
Leade Rd.

Port-
land

OR USA 97203

8042 112-90-
3829

723-99-
9329

Laughton Karla 503 323-
5929

900 N.
Magpie St.

Port-
land

OR USA 97202

8042 434-23-
9292

723-99-
9329

MacLeish Cochran 503 433-
9493

1722 SE
Ogden Ct.

Port-
land

OR USA 97202

6380 433-01-
3922

433-01-
3922

Horgran Eric 206 323-
4983

18 Thud
Dr. S.

Seattle WA USA 98198

6380 232-30-
9999

433-01-
3922

Farnsdale Finwick 206 434-
4949

2
Bellevue
Ave.

Seattle WA USA 98118

6380 333-90-
3828

433-01-
3922

Wolfe Wanda 206 323-
3333

2 S. Boze
St. #15

Seattle WA USA 98108

6380 322-09-
2122

433-01-
3922

Begude Nina 206 333-
9023

1297 W.
Cay Way

Seattle WA USA 98108

6380 342-78-
2832

433-01-
3922

Howe Saphron 206 323-
4933

9827 Des
Moines
Dr.

Seattle WA USA 98108

6380 882-00-
3234

433-01-
3922

Salidin Uma 206 390-
8328

13 Echo
Lake Place

Seattle WA USA 98126

6380 321-89-
8832

433-01-
3922

Marsicano Evan 206 322-
9392

7 Dancer
Ave. SW'

Seattle WA USA 98126

6380 762-32-
5555

433-01-
3922

Boulignini Gus 206 323-
9396

308 S.
Fidalgo St.

Seattle WA USA 98108

7896 433-01-
3921

433-01-
3921

Malraison Marcel 206 889-
9983

2298
Berry Dr.

Fremont CA USA 94555

7896 322-32-
8382

433-01-
3921

West Diana 206 898-
3233

20-B
Knute St.

Fremont CA USA 94536

Table B-8: store_employees table (continued)

stor-
_id

emp-
_id

mgr-
_id

emp_-
lname

emp_-
fname

phone address city state coun-
try

post-
al-

code



B-22 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

7896 328-74-
8748

433-01-
3921

Cazalis Mari 206 326-
6785

18 May
Dr. #7

Fremont CA USA 94555

7896 325-87-
6766

433-01-
3921

Zorronius Gaius 206 363-
8988

1967
Claude
Dr.

Fremont CA USA 94555

7896 323-67-
5646

433-01-
3921

Podding Marvin 206 438-
7858

242 Ram
Ct. #123

Fremont CA USA 94539

7896 673-03-
6728

433-01-
3921

Phelan Micky 206 323-
7676

1212
Spinn Ct.

Fremont CA USA 94539

7896 326-77-
6482

433-01-
3921

Bokanow-
ski

Peter 206 432-
4832

13 Sparto
Dr.

Fremont CA USA 94539

7896 653-48-
2975

433-01-
3921

Poodals F.W. 206 387-
6863

739
Sendak
Dr.

Fremont CA USA 94538

7896 320-37-
4682

433-01-
3921

Scrubbs Randy 206 323-
3874

18 Washo
Dr. #A

Fremont CA USA 94539

7896 323-67-
4762

433-01-
3921

Mullins M. 206 382-
7862

1717
Zircon Ter.

Fremont CA USA 94555

7896 326-76-
3863

433-01-
3921

Clarac Sebastia
n

206 387-
6732

5622 Zin
St. #78

Fremont CA USA 94539

5023 534-92-
2910

534-92-
2910

Armand Mary 510 323-
5478

1912
Badger
Ln.

Con-
cord

CA USA 94521

5023 342-38-
2782

534-92-
2910

Blanzat Gomez 510 382-
3828

4229
Tiffany Pl.

Con-
cord

CA USA 94518

5023 322-39-
3222

534-92-
2910

Winate Patrick 510 322-
5873

16 Mahoo
Ln.

Con-
cord

CA USA 94521

5023 932-20-
4389

534-92-
2910

Burke Aldous 510 433-
4829

12 Ponder
Dr. #4

Con-
cord

CA USA 94521

5023 322-43-
2828

534-92-
2910

Rough-
head

Jonathan 510 323-
4782

2 Athos
Ct.

Con-
cord

CA USA 94521

5023 832-32-
3289

534-92-
2910

Johnson Alexis 510 323-
3824

927
Aramis
Ct.

Con-
cord

CA USA 94520

5023 432-32-
4444

534-92-
2910

Blitzstein Jack 510 323-
3874

2 Porthos
Ct.

Con-
cord

CA USA 94519

5023 543-43-
8438

534-92-
2910

Darby Andy 510 422-
3232

222
Juniper
Ct.

Con-
cord

CA USA 94519

5023 423-42-
9933

534-92-
2910

Askanzi Robert 510 422-
3232

222
Juniper
Ct.

Con-
cord

CA USA 94519

Table B-8: store_employees table (continued)

stor-
_id

emp-
_id

mgr-
_id

emp_-
lname

emp_-
fname

phone address city state coun-
try

post-
al-

code



Transact-SQL User’s Guide B-23

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

roysched Table

roysched is defined as follows:

create table roysched
title_id tid not null
    references titles(title_id),
lorange int null,
hirange int null,
royalty int null)

Its nonclustered index for the title_id column is defined as:

create nonclustered index titleidind
on roysched (title_id)

Table B-9 lists the contents of roysched:

5023 838-28-
1982

534-92-
2910

Zavatta Virginia 510 423-
4932

629 Wind
Way

Con-
cord

CA USA 94521

5023 433-43-
3838

534-92-
2910

Fife Ben 510 322-
8427

782
Sapling
Ct.

Con-
cord

CA USA 94519

Table B-9: roysched table

title_id lorange hirange royalty

BU1032 0 5000 10

BU1032 5001 50000 12

PC1035 0 2000 10

PC1035 2001 3000 12

PC1035 3001 4000 14

PC1035 4001 10000 16

PC1035 10001 50000 18

BU2075 0 1000 10

BU2075 1001 3000 12

BU2075 3001 5000 14

BU2075 5001 7000 16

BU2075 7001 10000 18

BU2075 10001 12000 20

Table B-8: store_employees table (continued)

stor-
_id

emp-
_id

mgr-
_id

emp_-
lname

emp_-
fname

phone address city state coun-
try

post-
al-

code



B-24 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

BU2075 12001 14000 22

BU2075 14001 50000 24

PS2091 0 1000 10

PS2091 1001 5000 12

PS2091 5001 10000 14

PS2091 10001 50000 16

PS2106 0 2000 10

PS2106 2001 5000 12

PS2106 5001 10000 14

PS2106 10001 50000 16

MC3021 0 1000 10

MC3021 1001 2000 12

MC3021 2001 4000 14

MC3021 4001 6000 16

MC3021 6001 8000 18

MC3021 8001 10000 20

MC3021 10001 12000 22

MC3021 12001 50000 24

TC3218 0 2000 10

TC3218 2001 4000 12

TC3218 4001 6000 14

TC3218 6001 8000 16

TC3218 8001 10000 18

TC3218 10001 12000 20

TC3218 12001 14000 22

TC3218 14001 50000 24

PC8888 0 5000 10

PC8888 5001 10000 12

PC8888 10001 15000 14

PC8888 15001 50000 16

PS7777 0 5000 10

PS7777 5001 50000 12

PS3333 0 5000 10

PS3333 5001 10000 12

Table B-9: roysched table (continued)

title_id lorange hirange royalty



Transact-SQL User’s Guide B-25

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

PS3333 10001 15000 14

PS3333 15001 50000 16

BU1111 0 4000 10

BU1111 4001 8000 12

BU1111 8001 10000 14

BU1111 12001 16000 16

BU1111 16001 20000 18

BU1111 20001 24000 20

BU1111 24001 28000 22

BU1111 28001 50000 24

MC2222 0 2000 10

MC2222 2001 4000 12

MC2222 4001 8000 14

MC2222 8001 12000 16

MC2222 8001 12000 16

MC2222 12001 20000 18

MC2222 20001 50000 20

TC7777 0 5000 10

TC7777 5001 15000 12

TC7777 15001 50000 14

TC4203 0 2000 10

TC4203 2001 8000 12

TC4203 8001 16000 14

TC4203 16001 24000 16

TC4203 24001 32000 18

TC4203 32001 40000 20

TC4203 40001 50000 22

BU7832 0 5000 10

BU7832 5001 10000 12

BU7832 10001 15000 14

BU7832 15001 20000 16

BU7832 20001 25000 18

BU7832 25001 30000 20

BU7832 30001 35000 22

Table B-9: roysched table (continued)

title_id lorange hirange royalty



B-26 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

discounts Table

discounts is defined as follows:

create table discounts
(discounttype varchar(40) not null,
stor_id char(4) null
    references stores(stor_id),
lowqty smallint null,
highqty smallint null,
discount float not null)

Table B-10 lists the contents of discounts:

blurbs Table

blurbs is defined as follows:

create table blurbs
(au_id  id not null
    references authors(au_id),
copy text null)

BU7832 35001 50000 24

PS1372 0 10000 10

PS1372 10001 20000 12

PS1372 20001 30000 14

PS1372 30001 40000 16

PS1372 40001 50000 18

Table B-10: discounts table

discounttype stor_id lowqty highqty discount

Initial Customer 8042 NULL NULL 10.5

Volume Discount NULL 100 1001 6.7

Huge Volume
Discount

NULL 1001 NULL 10

Customer Discount 8042 NULL NULL 5

Table B-9: roysched table (continued)

title_id lorange hirange royalty



Transact-SQL User’s Guide B-27

Adaptive Server Enterprise Release 11.5.x Tables in the pubs3 Database

Table B-11 lists the contents of blurbs:

Table B-11: blurbs table

au_id copy

486-29-1786 If Chastity Locksley didn’t exist, this troubled world would have created her! Not
only did she master the mystic secrets of inner strength to conquer adversity when
she encountered it in life, but also, after “reinventing herself,” as she says, by writing
“Emotional Security: A New Algorithm” following the devastating loss of her cat,
Old Algorithm, she founded Publish or Perish, the page-by-page, day-by-day, write-
yourself-to-wellness encounter workshops franchise empire, the better to share her
inspiring discoveries with us all. Her “Net Etiquette,” a brilliant social treatise in its
own right and a fabulous pun, is the only civilized alternative to the gross etiquette
often practiced on the public networks.

648-92-1872 A chef’s chef and a raconteur’s raconteur, Reginald Blotchet-Halls calls London his
second home. “Th’ palace kitchen’s me first ‘ome, act’lly!” Blotchet-Halls’
astounding ability to delight our palates with palace delights is matched only by his
equal skill in satisfying our perpetual hunger for delicious back-stairs gossip by
serving up tidbits and entrees literally fit for a king!

998-72-3567 Albert Ringer was born in a trunk to circus parents, but another kind of circus trunk
played a more important role in his life years later. He grew up as an itinerant
wrestler and roustabout in the reknowned Ringer Brothers and Betty and Bernie’s
Circus. Once known in the literary world only as Anne Ringer’s wrestling brother,
he became a writer while recuperating from a near-fatal injury received during a
charity benefit bout with a gorilla. “Slingshotting” himself from the ring ropes,
Albert flew over the gorilla’s head and would have landed head first on the concrete.
He was saved from certain death by Nana, an elephant he had befriended as a child,
who caught him in her trunk. Nana held him so tightly that three ribs cracked and
he turned blue from lack of oxygen. “I was delirious. I had an out-of-body
experience! My whole life passed before me eyes. I promised myself ‘If I get through
this, I’ll use my remaining time to share what I learned out there.’ I owe it all to
Nana!”

899-46-2035 Anne Ringer ran away from the circus as a child. A university creative writing
professor and her family took Anne in and raised her as one of their own. In this
warm and television-less setting she learned to appreciate the great classics of
literature. The stream of aspiring and accomplished writers that flowed constantly
through the house confirmed her repudiation of the circus family she’d been born
into: “Barbarians!” The steadily growing recognition of her literary work was, to her,
vindication. When her brother’s brush with death brought them together after many
years, she took advantage of life’s crazy chance thing and broke the wall of anger
that she had constructed to separate them. Together they wrote, “Is Anger the
Enemy?” an even greater blockbuster than her other collaborative work, with Michel
DeFrance, “The Gourmet Microwave.”



B-28 The pubs3 Database

Tables in the pubs3 Database Adaptive Server Enterprise Release 11.5.x

672-71-3249 They asked me to write about myself and my book, so here goes: I started a
restaurant called “de Gustibus” with two of my friends. We named it that because
you really can’t discuss taste. We’re very popular with young business types because
we’re young business types ourselves. Whenever we tried to go out to eat in a group
we always got into these long tiresome negotiations: “I just ate Italian,” or “I ate
Greek yesterday,” or “I NEVER eat anything that’s not organic!” Inefficient. Not
what business needs today. So, it came to us that we needed a restaurant we could
all go to every day and not eat the same thing twice in a row maybe for a year! We
thought, “Hey, why make people choose one kind of restaurant over another, when
what they really want is a different kind of food?” At de Gustibus you can eat
Italian, Chinese, Japanese, Greek, Russian, Tasmanian, Iranian, and on and on all at
the same time. You never have to choose. You can even mix and match! We just
pooled our recipes, opened the doors, and never looked back. We’re a big hit, what
can I say? My recipes in “Sushi, Anyone?” are used at de Gustibus. They satisfy
crowds for us every day. They will work for you, too. Period!

409-56-7008 Bennet was the classic too-busy executive. After discovering computer databases, he
now has the time to run several successful businesses and sit on three major
corporate boards. Bennet also donates time to community service organizations.
Miraculously, he also finds time to write and market executive-oriented, in-depth
computer hardware and software reviews. “I’m hyperkinetic, so being dynamic and
fast-moving is a piece of cake. But being organized isn’t easy for me or for anyone I
know. There’s just one word for that: ‘databases!’ Databases can cure you or kill you.
If you get the right one, you can be like me. If you get the wrong one, watch out.
Read my book!”

Table B-11: blurbs table (continued)

au_id copy



Transact-SQL User’s Guide B-29

Adaptive Server Enterprise Release 11.5.x Diagram of the pubs3 Database

Diagram of the pubs3 Database

Figure B-1: Diagram of the pubs3 database

1 au_id

1 au_id

stor_id stor_id

1 1

N title_id

1 title_id

N stor_id

1 stor_id

N stor_id

1 stor_id

N au_id

1 au_id

stor_id stor_id
ord_num ord_num

N 1

pub_id pub_id

N 1

title_id title_id

N 1

title_id title_id

1 N

AUTHORS
au_id
au_lname
au_fname
phone
address
city
state
country
postalcode

BLURBS
au_id
copy

SALESDETAIL
stor_id
ord_num
title_id
qty
discount

DISCOUNTS
discounttype
stor_id
lowqty
highqty
discount

SALES
stor_id
ord_num
date

PUBLISHERS
pub_id
pub_name
city
state

ROYSCHED
title_id
lorange
hirange
royalty

TITLES
title_id
title
type
pub_id
price
advance
num_sold
notes
pubdate
contract

TITLEAUTHOR
au_id
title_id
au_ord
royaltyper

STORE_EMPLOYEES
stor_id
emp_id
mgr_id
emp_lname
emp_fname
phone
address
city
state
country
postalcode

1 stor_id

N stor_id

STORES
stor_id
stor_name
stor_address
city
state
country
postalcode
payterms



B-30 The pubs3 Database

Diagram of the pubs3 Database Adaptive Server Enterprise Release 11.5.x



Transact-SQL User’s Guide Index-1

Index

Note: Page numbers in bold are primary references.

Symbols
& (ampersand)

“and” bitwise operator 1-13, 2-9
* (asterisk)

multiplication operator 1-12, 2-9 to
2-13

for overlength numbers 10-12
pairs surrounding comments 13-30
select and 2-4

*= (asterisk equals) outer join
operator 4-7, 4-17

*/ (asterisk slash), comment
keyword 13-29, 13-30

@ (at sign)
local variable name 13-31
procedure parameters and 14-6
rule arguments and 12-9

@@ (at signs), global variable
name 13-36

\ (backslash)
character string continuation

with 2-32
^ (caret)

“exclusive or” bitwise operator 1-13,
2-9

, (comma)
in default print format for money

values 6-10
$ (dollar sign)

in identifiers 1-7
in money datatypes 8-10

-- (double hyphen) comments 1-26,
13-30

=* (equals asterisk) outer join
operator 4-7, 4-18

= (equals sign)
comparison operator 1-15, 2-20

> (greater than)

comparison operator 1-15, 2-20
range specification 2-22

>= (greater than or equal to) comparison
operator 1-15, 2-20

< (less than)
comparing dates 2-20
comparison operator 1-15
range queries and 2-22

<= (less than or equal to) comparison
operator 1-15, 2-20

- (minus sign)
arithmetic operator 1-12, 2-9 to 2-13
for negative monetary values 8-10

!= (not equal to) comparison
operator 1-15, 2-20

<> (not equal to) comparison
operator 1-15, 2-20

!> (not greater than) comparison
operator 1-15, 2-20

!< (not less than) comparison
operator 1-15, 2-20

() (parentheses)
in arithmetic statements 2-12
in built-in functions 10-5
in expressions 1-12
in matching lists 2-23
in system functions 10-5
with union operators 3-39

% (percent sign)
arithmetic operator (modulo) 1-13,

2-9 to 2-13
| (pipe)

“or” bitwise operator 1-13, 2-9
+ (plus)

arithmetic operator 1-12, 2-9 to 2-13
null values and 2-36
string concatenation operator 1-14,

10-15



Index-2

Adaptive Server Enterprise Release 11.5.x

# (pound sign), temporary table
identifier prefix 7-11, 7-23, 7-25

£ (pound sterling sign)
in identifiers 1-7
in money datatypes 8-10

" " (quotation marks)
comparison operators and 1-15
enclosing column headings 2-7 to 2-8
enclosing empty strings 1-16, 8-16
enclosing parameter values 14-9
enclosing values 6-6, 8-4
in expressions 1-16
literal specification of 1-16, 2-31

/ (slash)
arithmetic operator (division) 1-12,

2-9 to 2-13
/* (slash asterisk), comment

keyword 13-29, 13-30
~ (tilde)

“not” bitwise operator 1-13, 2-9
_ (underscore)

in temporary table names 7-25
¥ (yen sign)

in identifiers 1-7
in money datatypes 8-10

Numerics
“0x” 8-9

counted in textsize 2-14

A
Abbreviations

date parts 10-25
out for output 14-26

abs absolute value mathematical
function 10-21

Accounts, Server. See Logins; Users
acos mathematical function 10-21
Adding

column data with insert 8-13, 8-22 to
8-25

columns to a table 7-49

constraints to a table 7-50
foreign keys 16-9 to 16-10
IDENTITY column to a table 7-50
rows to a table or view 8-12 to 8-25
timestamp column 17-28
user-defined datatypes 6-15 to 6-16
users to a database 7-4

Addition operator (+) 1-12, 2-9 to 2-13
add keyword

alter table 7-49
Administrative instructions and

results 1-2
Aggregate functions 3-1 to 3-7, 10-19 to

10-20
See also Row aggregates; individual

function names
all keyword and 3-2
compute clause and 1-19, 3-29 to 3-36
cursors and 17-10
datatypes and 3-3
distinct keyword and 3-2, 3-5
group by clause and 3-3, 3-7 to 3-22
on multiple columns 3-35
nesting 3-14
null values and 3-6 to 3-7
order by clause and 3-27
scalar aggregates 3-3
subqueries including 5-12
vector aggregates 3-7
views and 9-18
where clause, not permitted 3-3

Aliases
table correlation names 2-18

all keyword
aggregate functions and 3-2
comparison operators and 5-14, 5-25
group by 3-17 to 3-18
searching with 5-15
select 2-16 to 2-17
subqueries including 1-17, 5-16, 5-25
union 3-39

allow_dup_row option, create index 11-11 to
11-12



Transact-SQL User’s Guide Index-3

Adaptive Server Enterprise Release 11.5.x

allow nested triggers configuration
parameter 16-24 to 16-27

alter database command 7-9 to 7-10
See also create database command

Altering. See Changing
alter table command 7-48 to 7-50

adding timestamp column 17-28
And (&)

bitwise operator 1-13, 2-9
and keyword

in expressions 1-17
in joins 4-9
in search conditions 2-37 to 2-39

Angles, mathematical functions
for 10-21

ansinull option, set 1-28
any keyword

in expressions 1-17
searching with 5-14
subqueries using 5-17 to 5-20, 5-25

Approximate numeric datatypes 6-5
Arguments

date functions 10-25
mathematical functions 10-21
string functions 10-8
system functions 10-2 to 10-5
text functions 10-17

arithabort option, set
arith_overflow and 1-27, 10-38
mathematical functions and

arith_overflow 10-38
mathematical functions and

numeric_truncation 10-38
arithignore option, set

arith_overflow and 1-27, 10-38
Arithmetic errors 1-27, 10-37
Arithmetic expressions 1-12, 2-4

not allowed with distinct 3-5
operator precedence in 2-12

Arithmetic operations 3-2
mixed mode 6-13 to 6-15

Arithmetic operators 2-9 to 2-12
as comparison operators 2-20
in expressions 1-12, 2-4

precedence of 2-12 to 2-13, 2-38
Ascending order, asc keyword 3-25
ASCII characters

ascii string function and 10-8, 10-14
in SQL 1-6

ascii string function 10-8, 10-14
asin mathematical function 10-21
Asterisk (*)

multiplication operator 1-12, 2-9 to
2-13

overlength numbers 10-12
pairs surrounding comments 13-30
select and 2-4
in subqueries with exists 5-24

atan mathematical function 10-21
@@char_convert global variable 13-40,

13-41, 13-42
@@cis_version global variable 13-43
@@client_csid global variable 13-41
@@client_csname global variable 13-41
@@connections global variable 13-42
@@cpu_busy global variable 13-42
@@error global variable 13-37

select into and 7-46
@@identity global variable 7-19, 8-19,

13-37
@@idle global variable 13-42
@@io_busy global variable 13-42
@@isolation global variable 13-40, 18-17
@@langid global variable 13-41
@@language global variable 13-42
@@max_connections global

variable 13-43
@@maxcharlen global variable 13-42
@@ncharsize global variable 13-42
@@nestlevel global variable 13-38

nested procedures and 14-15
nested triggers and 16-24

@@options global variable 13-40
@@pack_received global variable 13-42
@@pack_sent global variable 13-42
@@packet_errors global variable 13-42
@@parallel_degree global variable 13-40
@@procid global variable 13-43



Index-4

Adaptive Server Enterprise Release 11.5.x

@@rowcount global variable 13-40
cursors and 17-16
triggers and 16-9

@@scan_parallel_degree global
variable 13-40

@@servername global variable 13-43
@@spid global variable 13-43
@@sqlstatus global variable 13-38
@@textcolid global variable 13-44
@@textdbid global variable 13-44
@@textobjid global variable 13-44
@@textptr global variable 13-44
@@textsize global variable 2-13, 13-40,

13-44
@@textts global variable 13-44
@@thresh_hysteresis global

variable 13-43
@@timeticks global variable 13-43
@@total_errors global variable 13-42
@@total_read global variable 13-43
@@total_write global variable 13-43
@@tranchained global variable 13-40
@@trancount global variable 13-37,

18-11
@@transtate global variable 13-38
@@version global variable 13-43
atn2 mathematical function 10-22
At sign (@)

local variable name 13-31
procedure parameters and 14-6
rule arguments and 12-9

au_pix table, pubs2 database A-24
Author blurbs table

pubs2 database A-22
pubs3 database B-26

authors table
pubs2 database A-2 to A-4
pubs3 database B-2 to B-4

auto identity database option 7-20
identity in nonunique indexes and 11-7

Automatic operations
chained transaction mode 18-13
datatype conversion 6-12, 10-30
hidden IDENTITY columns 7-20

triggers 16-1
avg aggregate function 3-2, 10-19

See also Aggregate functions
as row aggregate 3-32

B
Backing up. See Recovery
Backslash (\)

for character string continuation 2-32
Base 10 logarithm function 10-22
Base date 8-8, 10-24
Base tables. See Tables
Batch processing 13-1

control-of-flow language 1-19, 13-1 to
13-2, 13-7 to 13-30

errors in 13-5 to 13-6
go command 13-6
local variables and 13-22
rules for 13-2 to 13-5
submitting as files 13-6 to 13-7

bcp (bulk copy utility)
IDENTITY columns and 8-22

begin...end commands 13-19
begin transaction command 18-6
between keyword 2-21 to 2-22

check constraint using 7-36
binary datatype 6-8 to 6-9

See also Datatypes
like and 2-25

Binary datatypes 6-8 to 6-9
“0x” prefix 8-9
concatenating 10-7
conversion 10-39
like and 2-25
operations on 10-7 to 10-17

Binary expressions xxxvii
concatenating 1-14, 10-15 to 10-16

Binary representation of data for bitwise
operations 1-13

Binding
defaults 12-4 to 12-6
rules 12-10 to 12-12

bit datatype 6-11



Transact-SQL User’s Guide Index-5

Adaptive Server Enterprise Release 11.5.x

See also Datatypes
outer joins and 4-19

Bitwise operators 1-13 to 1-14, 2-8
Blanks

character datatypes and 6-7
in comparisons 1-15, 2-20, 2-30
empty string evaluated as 1-16
like and 2-30
removing leading with ltrim

function 10-9
removing trailing with rtrim

function 10-9
blurbs table

pubs2 database A-22
pubs3 database B-26

Boolean (logical) expressions 1-11
select statements in 13-8

Branching 13-23
break command 13-21 to 13-22
Browse mode 17-26 to 17-28

cursor declarations and 17-27
timestamp datatype and 6-12, 10-4

Built-in functions 10-1 to 10-41
aggregate 10-19 to 10-20
conversion 10-30
date 10-24 to 10-30
image 10-17 to 10-19
mathematical 10-20 to 10-24
security 10-41 to 10-42
string 10-7 to 10-17
system 10-1 to 10-7
text 10-17 to 10-19
type conversion 10-30 to 10-37
views and 9-9

Bytes
@@maxcharlen limit 13-42
@@ncharsize average length 13-42
@@textsixe limit 13-40
composite index limit 11-6
datatype storage 6-2, 7-11
delimited identifier limit 1-8
for text and image data 13-44
hexidecimal digits and 8-9
identifier limit 1-6

length of expression (datalength
function) 10-3

number allowed in identifiers 1-7
output string limit 13-26
password length 1-29
print messages limit 13-24
quoted column limit 2-7
retrieved by readtext 2-14
subquery limit 5-3
temporary table name limit 1-7

C
Calculating dates 10-29
Cartesian product 4-8
Cascading changes (triggers) 16-2,

16-10
case expressions 13-10 to 13-19

coalesce 13-17
comparing values and nullif 13-18
data representation 13-10
determining datatype 13-13
division by zero avoidance 13-11
search conditions in 13-13
stored procedure example 14-8
value comparisons and 13-15
 when…then keyword 13-13

Case sensitivity 1-7
in comparison expressions 1-15
in SQL xxxvi

ceiling mathematical function 10-22
chained option, set 18-13
Chained transaction mode 1-25, 18-13
Changing

See also Updating
column names 7-52
database size 7-9 to 7-10
default database 1-30
defaults 7-49
index names 7-52
object names 7-52 to 7-53
passwords for login accounts 1-29
tables 7-48 to 7-53
view definitions 9-15



Index-6

Adaptive Server Enterprise Release 11.5.x

Changing data. See Data modification
@@char_convert global variable 13-40,

13-41, 13-42
char_length string function 10-9
Character data 6-6

See also individual character datatype
names

avoiding “NULL” in 8-15
converting 10-33
entry rules 8-4
operations on 10-7 to 10-17
searching for 2-31
trailing blanks in 6-7

Character datatypes 6-6
converting from multibyte to

single-byte 10-34
converting numbers to 10-34

Character expressions xxxvii, 1-12
Characters

number of 10-9
special 1-6
wildcard 2-26 to 2-31, 14-11

Character sets 1-5
conversion errors 1-8
iso_1 1-8

Character strings 2-31
continuation with backslash (\) 2-32
empty 1-16
matching 2-25
select list using 2-8
specifying quotes within 1-16, 2-31
truncation 1-26

char datatype 6-6 to 6-7
See also Character data; Datatypes
entry rules 8-4
in expressions 1-16
like and 2-25

charindex string function 10-9, 10-10 to
10-11

char string function 10-8
Check constraints 7-28, 7-36
checkpoint command 18-32
@@cis_version global variable 13-43
Clauses 1-2

Client
cursors 17-7
host computer name 10-3

@@client_csid global variable 13-41
@@client_csname global variable 13-41
close command 17-19
close on endtran option, set 18-29
Closing cursors 17-5
clustered constraint

create index 11-9
create table 7-32

Clustered indexes 11-8 to 11-10
See also Indexes
integrity constraints 7-32
number of total pages used 10-4
used_pgs system function and 10-4

coalesce keyword, case 13-17
Codes

soundex 10-10
col_length system function 10-2, 10-5
col_name system function 10-2
Column-level constraints 7-28
Column names 1-9

changing 7-52
changing in views 9-7
finding 10-2
qualifying in subqueries 5-4

Column pairs. See Joins; Keys
Columns 1-2

See also Database objects; select
command

access permissions on 7-54
adding data with insert 8-13, 8-22 to

8-25
defaults for 7-30, 12-4 to 12-6
gaps in IDENTITY values 7-18, 7-20

to 7-23
group by and 3-7, 3-14
IDENTITY 7-16 to 7-23
indexing more than one 11-5
initializing text 8-30
joins and 4-3, 4-7
length definition 7-16
length of 10-2



Transact-SQL User’s Guide Index-7

Adaptive Server Enterprise Release 11.5.x

maximum number 7-50
null values and check constraints 7-37
null values and default 7-15
order in insert statements 8-14, 8-23
order in select statements 2-6
qualifying names in subqueries 5-4
rules 12-9
rules conflict with definitions of 7-16,

12-11
system-generated 7-16
variable-length 7-15

Comma (,)
default print format for money

values 6-10
Commands 1-1 to 1-2

See also individual command names
not allowed in user-defined

transactions 18-6
Command terminator 1-29
Comments

ANSI style 1-26
double-hyphen style 13-30
in SQL statements 13-29 to 13-30

commit command 18-6
Common keys

See also Foreign keys; Joins; Primary
keys

Comparing values
in expressions 1-15
for joins 4-7
null 2-34, 13-35
timestamp 10-4, 17-28

Comparison operators 2-20 to 2-21
See also Relational expressions
correlated subqueries and 5-30 to 5-32
in expressions 1-15
modified, in subqueries 5-14, 5-15
null values and 2-33, 13-35
symbols 1-15, 2-20
unmodified, in subqueries 5-11 to

5-13
Compatibility, data

create default and 12-3
of rule to column datatype 12-2

Component Integration Services
and update statistics command 11-15
automatic IDENTITY columns 7-20
connecting to a server 1-29
described 1-24
image datatype 6-9
joins 4-1
text datatype 6-7
transactions and 18-4
triggers 16-28

Composite indexes 11-5
Computations. See Computed columns
compute clause 3-29 to 3-37

different aggregates in same 3-35 to
3-36

grand totals 3-36 to 3-37
multiple columns and 3-33, 3-35
not allowed in cursors 17-6
row aggregates and 3-32 to 3-36
subgroups and 3-33
subtotals for grouped

summaries 3-29
union and 3-41
using more than one 3-34

Computed columns 2-8 to 2-13, 9-19
insert 8-23
with null values 2-10
update 8-27
and views 9-9, 9-19

Computing dates 10-29
Concatenation 10-15 to 10-16

binary data 10-7
expressions 10-7
strings 10-7
using + operator 1-14, 10-15
using + operator, null values and 2-36

Connections
transactions and 18-31

@@connections global variable 13-42
Consistency

transactions and 18-3
Constants xxxvi, 1-5

in expressions 1-16, 2-4
Constraints 7-3, 7-27



Index-8

Adaptive Server Enterprise Release 11.5.x

check 7-28, 7-36
column-level 7-28
default 7-28
primary key 7-28, 7-31
referential integrity 7-28, 7-32
table-level 7-28
unique 7-28, 7-31
with NULL values 7-14
with rules 12-12

Continuation lines, character string 2-32
continue command 13-21 to 13-22
Control-break report 3-29
Control-of-flow language 1-19, 1-21,

13-7 to 13-30
Conventions

naming 1-5 to 1-11
Transact-SQL 1-5 to 1-11
used in manuals xxxiv

Conversion
between character sets 1-7 to 1-8
datatypes 7-16
degrees to radians 10-23
implicit 1-16, 6-12, 10-30
integer value to character value 10-8
lowercase to uppercase 10-10
lower to higher datatypes 1-16
radians to degrees 10-22
string concatenation 1-14
uppercase to lowercase 10-9

convert function 6-12, 10-32 to 10-41
concatenation and 1-14, 10-7, 10-16
date styles 10-40
explicit conversion with 10-19
length default 10-33
truncating values 10-34

Copying
data with insert...select 8-24
rows 8-24
tables with bcp 8-21
tables with select into 7-42

Correlated subqueries 5-28 to 5-32
comparison operators in 5-30
correlation names and 5-30
exists and 5-25

having clause in 5-32
Correlation names

self-joins 4-11
subqueries using 5-5, 5-30
table names 2-18, 4-11

cos mathematical function 10-22
cot mathematical function 10-22
count(*) aggregate function 3-2, 3-4, 3-32

See also Aggregate functions
on columns with null values 3-6, 3-15
including null values 3-6

count aggregate function 3-2, 10-19
See also Aggregate functions
on columns with null values 3-6 to

3-7, 3-15
as row aggregate 3-32

@@cpu_busy global variable 13-42
create database command 7-6 to 7-10

batches using 13-2
create default command 12-3 to 12-4

batches and 13-2
create procedure with 14-26

create index command 11-4 to 11-13
batches using 13-3
fillfactor option 11-7
ignore_dup_key 11-6
max_rows_per_page option 11-8

create procedure command 14-2 to 14-4,
14-5 to 14-18, 15-18

See also Stored procedures; Extended
stored procedures (ESPs)

batches using 13-2
null values and 14-11
output keyword 14-21 to 14-26
rules for 14-26
with recompile option 14-14

create rule command 12-9
batches using 13-2
create procedure with 14-26

create schema command 7-34
create table command 7-10 to 7-13

batches using 13-3
composite indexes and 11-5
constraints and 7-27



Transact-SQL User’s Guide Index-9

Adaptive Server Enterprise Release 11.5.x

in different database 7-27
example 7-13, 7-39
null types and 7-14
null values and 8-15
in stored procedures 14-27
user-defined datatypes and 6-16

create trigger command 16-3 to 16-5
batches using 13-2
create procedure with 14-26
displaying text of 16-32

create view command 9-6
batches using 13-3
create procedure with 14-26
syntax 9-7
union prohibited in 3-41

Creating
databases 7-6 to 7-9
datatypes 6-15 to 6-17
defaults 12-3 to 12-4, 12-7
indexes 11-4 to 11-10
rules 12-9
stored procedures 14-2 to 14-18, 14-26
tables 7-39 to 7-48
temporary tables 7-11, 7-23 to 7-24
triggers 16-3 to 16-5

CS_DATAFMT structure 15-8
CS_SERVERMSG structure 15-8
Currency symbols 8-10
Current database

changing 7-5
finding name 10-3
finding number 10-3

Current date 10-27
Current user

suser_id system function 10-4
suser_name system function 10-4
user system function 10-4

Cursor result set 17-1, 17-9
cursor rows option, set 17-15
Cursors 17-1 to 17-26

buffering client rows 17-15
client 17-7
closing 17-19
deallocating 17-19

declaring 17-5 to 17-12
deleting rows 17-17
execute 17-7
fetching 17-13 to 17-15
fetching multiple rows 17-15
for browse and 17-27
Halloween problem 17-12
language 17-7
locking and 17-24
name conflicts 17-8
nonunique indexes 17-9
number of rows fetched 17-16
opening 17-12
position 17-1
read-only 17-10
scans 17-9
scope 17-7, 17-7 to 17-8
server 17-7
status 17-14
stored procedures and 17-22
subqueries and 5-3
transactions and 18-29 to 18-30
unique indexes 17-9
updatable 17-10
updating rows 17-16
variables 17-14

curunreservedpgs system function 10-2
Custom datatypes. See User-defined

datatypes

D
data_pgs system function 10-3
Database devices 7-7
Database integrity. See Data integrity;

Referential integrity
Database object owners

names in stored procedures 14-27
Database objects 7-1

See also individual object names
access permissions for 7-54
dropping 13-3
ID number (object_id) 10-4
naming 1-6 to 1-10



Index-10

Adaptive Server Enterprise Release 11.5.x

renaming 7-52 to 7-53
stored procedures and 14-26, 14-27,

14-28
system procedures and 14-31
temporary tables and 7-24

Database Owners
adding users 7-4
transferring ownership 7-6
user ID number 1 10-2

Databases 7-4 to 7-10
See also Database objects
adding users 7-4
choosing 7-5
creating user 7-6 to 7-9
dropping 7-10
help on 7-55
ID number, db_id function 10-3
joins and design 4-2
name 7-6
number of Server 7-6
optional 7-4
ownership 7-6
size 7-7, 7-9 to 7-10
system 7-4
use command 7-5
user 7-4

Data definition 7-1, 14-31
Data dependency. See Dependencies,

database object
Data dictionary. See System tables
Data integrity 1-20, 7-2, 12-8

See also Data modification; Referential
integrity

methods 7-27
datalength system function 10-3, 10-6,

10-18
Data modification 1-1 to 1-2, 9-2

permissions 8-2
remote procedure calls and 14-6
text and image with writetext 8-30 to

8-31
update 8-25 to 8-30
views and 9-17

Datatype conversions 10-30 to 10-37

automatic 6-12
binary and numeric data 10-37
bit information 10-40
case expressions 13-13
character information 10-33, 10-34
column definitions and 7-16
date and time information 10-35
domain errors 10-38
hexadecimal-like information 10-38
image 10-39
money information 10-34
numeric information 10-34, 10-35
overflow errors 10-37
rounding during 10-34
scale errors 10-38
supported (chart) 10-32

Datatype precedence. See Precedence
Datatypes 6-1 to 6-13

aggregate functions and 3-3
approximate numeric 6-5
character 6-6
create table and 7-11, 7-14, 11-5
creating 6-15 to 6-18
datetime values comparison 1-15
defaults and 6-17, 12-4 to 12-6
entry rules 6-4, 8-4 to 8-12
hierarchy 6-13 to 6-14
integer 6-4
joins and 4-7
length 6-16
list of 6-2
local variables and 13-31
mixed, arithmetic operations on 1-13
money 6-10
rules and 6-17, 12-10 to 12-12
summary of 6-2 to 6-3
temporary tables and 7-24
union 3-37
views and 9-7

Datatypes, custom. See User-defined
datatypes

dateadd function 10-25, 10-29
datediff function 10-25, 10-29
dateformat option, set 8-6 to 8-8



Transact-SQL User’s Guide Index-11

Adaptive Server Enterprise Release 11.5.x

Date functions 10-24 to 10-30
datename function 8-8, 10-25 to 10-28
datepart function 8-8, 10-25 to 10-28
Date parts 8-6, 10-25 to 10-28

abbreviation names and values 10-25
Dates

See also Time values
acceptable range of 8-5
adding date parts 10-29
calculating 10-29
comparing 1-15, 2-20
current 10-27
display formats 6-11, 10-25
entry formats 6-10, 8-5 to 8-9, 10-25
entry rules 2-31
functions for 10-24 to 10-30
like and 8-8
searching for 2-31, 8-8
storage 10-24

datetime datatype 6-10, 8-4, 10-24
See also Dates; timestamp datatype
comparison of 1-15
concatenating 10-16
entry format 8-4, 10-25
like and 2-25
operations on 10-24
storage 10-24

day date part 10-26
dayofyear date part abbreviation and

values 10-26
db_id system function 10-3
db_name system function 10-3
dbcc (Database Consistency Checker)

stored procedures and 14-27
DB-Library programs

set options for 1-22
transactions and 18-26

dd. See day date part
deallocate cursor command 17-19
Deallocating cursors 17-5, 17-19
Debugging aids 1-21
decimal datatype 8-11
declare command 13-31
declare cursor command 17-6

Declaring
cursors 17-3, 17-5 to 17-12
local variables 13-31 to 13-36
parameters 14-6 to 14-7

Default database devices 7-7
default keyword 7-30

create database 7-7
Defaults 1-21, 12-2 to 12-3

See also Database objects
binding 12-4 to 12-6
column 8-16
creating 12-3 to 12-4, 12-7
datatypes and 6-17, 12-4 to 12-6
dropping 12-8
insert statements and 8-13
naming 12-3
null values and 7-42, 12-7
system tables and 12-5
unbinding 12-6 to 12-7

Default settings
databases 1-29
date display format 6-11
language 8-6, 8-8
parameters for stored

procedures 14-9 to 14-12
print format for money values 6-10

Default values
datatype length 6-6, 6-8
datatype precision 6-4
datatypes 6-16
datatype scale 6-4

Defining local variables 13-31 to 13-36
degrees mathematical function 10-22
Delayed execution (waitfor) 13-28 to

13-29
delete command 8-31 to 8-33, 9-19

See also Dropping
cursors and 17-17
multitable views and 9-18
subqueries and 5-7
triggers and 16-5, 16-7 to 16-8, 16-10

to 16-12
views and 9-17

deleted table 16-7 to 16-8, 17-6



Index-12

Adaptive Server Enterprise Release 11.5.x

Deleting
cursor rows 17-17
cursors 17-4
rows 8-31 to 8-33
views 9-22

Delimited identifiers 1-8
Dependencies, database object 14-33 to

14-34
Dependencies, display 9-25
Dependent tables 16-10
Dependent views 9-15
Descending order (desc keyword) 3-25
Designing tables 7-39
Detail tables 16-7
Devices 7-7

See also sysdevices table
Diagram

pubs2 database A-27
pubs3 database B-29

Difference (with exists and not exists) 5-27
to 5-28

difference string function 10-9, 10-13
Dirty reads 18-15

See also Isolation levels
discounts table

pubs2 database A-22
pubs3 database B-26

Disk crashes. See Recovery
distinct keyword

aggregate functions and 3-2, 3-5
cursors and 17-10
expression subqueries using 5-13
order by and 3-28
row aggregates and 3-32
select 2-16 to 2-17
select, null values and 2-17

Distribution pages 8-34
Division operator (/) 1-12, 2-9 to 2-13
DLL (Dynamic Link Library). See

Dynamic Link Libraries
Dollar sign ($)

in identifiers 1-7
in money datatypes 8-10

double precision datatype 6-5

entry format 8-10
Double-precision floating-point

values 6-5
Doubling quotes

in character strings 2-31
in expressions 1-16

drop commands in batches 13-3
drop database command 7-10
drop default command 12-8
drop index command 11-13
Dropping

See also delete command; individual drop
commands

constraints from a table 7-50
databases 7-10
defaults 12-8
indexes 11-13
objects 13-3
primary keys 16-10 to 16-12
procedures 14-28
rows from a table 8-31 to 8-33
rules 12-13
system tables 7-53
tables 7-53, 9-17
triggers 16-31
views 9-17, 9-22

drop procedure command 14-13, 14-28,
15-20

drop rule command 12-13
drop table command 7-53
drop trigger command 16-31
drop view command 9-22
Dump, database 18-32
Duplicate key errors, user

transaction 18-26
Duplicate rows

indexes and 11-12
removing with union 3-39

dw. See weekday date part
dy. See dayofyear date part
Dynamic dumps 18-32
Dynamic Link Libraries

building 15-15 to 15-18



Transact-SQL User’s Guide Index-13

Adaptive Server Enterprise Release 11.5.x

for extended stored procedures 15-15
to 15-18

sample definition file 15-18
search order 15-15
UNIX makefile 15-16
Windows NT makefile 15-17

E
else keyword. See if...else conditions
Embedding join operations 4-2
Empty string (" ") or (' ') 6-6, 10-16

not evaluated as null 8-16
as a single space 1-16

Enclosing quotes in expressions 1-16
Encryption

data 1-5
end keyword 13-13, 13-19
Enhancements to SQL 1-18 to 1-24
e or E exponent notation

approximate numeric datatypes 8-10
money datatypes 8-10

Equal to. See Comparison operators
Equijoins 4-6, 4-8 to 4-9
errorexit keyword, waitfor 13-29
@@error global variable 13-37

select into and 7-46
Error handling 1-21
Error messages

constraints and 7-29
numbering of 13-26
severity levels of 13-26
user-defined transactions and 18-30

Errors
arithmetic overflow 10-37
in batches 13-5 to 13-6
convert function 10-34 to 10-38
divide-by-zero 10-37
domain 10-38
duplicate key 18-26
packet 13-42
return status values 14-19 to 14-26
scale 10-38
trapping mathematical 10-23

triggers and 16-25
in user-defined transactions 18-26

Escape characters 2-28
esp execution priority configuration

parameter 15-6
ESPs. See Extended stored procedures
esp unload dll configuration

parameter 15-3, 15-6
European characters in object

identifiers 1-8
execute command 1-11, 14-2, 14-5

for ESPs 15-21
output keyword 14-21 to 14-26
with recompile option 14-14

Execute cursors 17-7
Execution

extended stored procedures 15-5
procedures 14-2

exists keyword 5-27 to 5-28, 13-9
search conditions 5-24

Explicit null value 8-15
Explicit transactions 18-14
Explicit values for IDENTITY

columns 8-18
exp mathematical function 10-22
Exponential value 10-22
Expressions 2-20, 3-2

concatenating 10-7, 10-15 to 10-16
converting datatypes 10-30 to 10-37
definition of 1-11
enclosing quotes in 1-16
including null values 2-36
replacing with subqueries 5-8
types of xxxvi to xxxvii, 1-11

Expression subqueries 5-11 to 5-13
Extended stored procedures 1-20, 15-1

to 15-23
creating 15-18, 15-19
creating functions for 15-7 to 15-18
DLL support for 15-3
example 15-4
exceptions 15-23
executing 15-21
freeing memory of 15-6



Index-14

Adaptive Server Enterprise Release 11.5.x

function example 15-9
messages from 15-23
naming 15-4
Open Server support for 15-3
performance impact of 15-6
permissions on 15-5
priority of 15-6
removing 15-20
renaming 15-21
source text 15-5

Extensions, Transact-SQL 1-6, 1-23 to
1-24

F
FALSE, return value of 5-24
fetch command 17-13
Fetching cursors 17-4
Fields, data. See Columns
Files

batch 13-6 to 13-7
fillfactor option 11-7
Finding

object dependencies 7-53
FIPS flagger 1-25
fipsflagger option, set 1-25
Fixed-length columns

binary datatypes for 6-8
character datatypes for 6-6
compared to variable-length 6-6
null values in 7-15

float datatype 6-5
See also Datatypes
computing with 10-23
entry format 8-10

Floating-point data xxxvi, 8-10
See also float datatype; real datatype

floor mathematical function 10-22
flushmessage option, set 1-21
for browse option, select 3-41

not allowed in cursors 17-6
foreign key constraint 7-34
Foreign keys 16-6 to 16-7

inserting 16-9 to 16-10

sp_help report on 7-58
updating 16-17 to 16-18

for load option
alter database 7-9
create database 7-8

Format strings
print 13-25

for read only option, declare cursor 17-6,
17-10

for update option, declare cursor 17-6, 17-10
Free pages, curunreservedpgs system

function 10-2
from keyword 2-18

delete 8-32
joins 4-4
update 8-29

Front-end applications, browse mode
and 17-26

Functions 10-1 to 10-41
aggregate 10-19 to 10-20
conversion 10-30 to 10-41
date 10-24 to 10-30
image 10-17 to 10-19
mathematical 10-20 to 10-24
security 10-41 to 10-42
string 10-7 to 10-17
system 10-1 to 10-7
text 10-17 to 10-19
and views 9-9

futureonly option
defaults 12-5, 12-6, 12-7
rules 12-10, 12-13

G
Gaps in IDENTITY column values 7-20

to 7-23
getdate date function 10-25 to 10-27
Global variables 13-36 to 13-44, 14-27

See also individual variable names
go command terminator 1-29, 13-1
goto keyword 13-23
Grand totals

compute 3-36 to 3-37



Transact-SQL User’s Guide Index-15

Adaptive Server Enterprise Release 11.5.x

order by 3-25
grant command 7-54
Greater than. See Comparison operators
group by clause 3-8 to 3-14, 17-10

aggregate functions and 3-7 to 3-22,
3-30

all and 3-17 to 3-18
correlated subqueries compared

to 5-31 to 5-32
having clause and 3-20 to 3-22
multiple columns in 3-14
nesting 3-10 to 3-14
null values and 3-15 to 3-16
order by and 3-27
select 3-9
subqueries using 5-13 to 5-14
triggers using 16-18 to 16-21
union and 3-41
where clause and 3-16 to 3-17
without aggregate functions 3-8, 3-13

Grouping
See also User-defined transactions
procedures 18-25
procedures of the same name 14-13

Guest users 7-3, 7-4, 10-2

H
Halloween problem 17-12
having clause 3-20 to 3-25

different from where clause 3-20
group by and 3-20
logical operators and 3-21
subqueries using 5-13 to 5-14, 5-32
union and 3-41
without aggregates 3-20
without group by 3-24

Headings, column 2-6 to 2-8
Help reports

See also individual system procedures
columns 12-14
database devices 7-7
database object 7-55 to 7-58
databases 7-55

datatypes 7-55 to 7-58
defaults 12-14
dependencies 14-33
indexes 11-14
rules 12-14
system procedures 14-32
text, object 14-33
triggers 16-31

Hexadecimal numbers
“0x” prefix for 2-14, 8-9
converting 10-36

hextoint function 6-12, 10-39
hh. See hour date part
Hierarchy

See also Precedence
datatype 6-13 to 6-14
operators 1-12

holdlock keyword 17-6, 18-3
cursors and 17-25
readtext 2-14

host_id system function 10-3
host_name system function 10-3
Host computer name 10-3
Host process ID, client process 10-3
hour date part 10-26
Hyphens as comments 13-30 to 13-31

I
Identifiers 1-5 to 1-10

delimited 1-8
quoted 1-8
system functions and 10-5

identity_insert option, set 8-18
identity burning set factor configuration

parameter 7-18, 7-21
IDENTITY columns 7-16 to 7-23

@@identity global variable 13-37
adding to tables 7-50
and referential integrity 7-18
Component Integration Services 7-20
creating tables with 7-17
datatype of 7-17



Index-16

Adaptive Server Enterprise Release 11.5.x

deleting with syb_identity
keyword 8-33

explicit values for 8-18
gaps, eliminating 8-21
gaps in values 7-18, 7-20 to 7-23, 8-21
inserting values into 8-18, 9-22
nonunique indexes 11-6
renumbering 8-21
reserving block of 8-20
selecting 7-19, 7-46
syb_identity in views 9-11
syb_identity keyword 7-19
system-generated values 7-18
unique values for 8-19
updating with syb_identity

keyword 8-29
user-defined datatypes and 7-17
using with select into 7-46 to 7-48
views and 9-11 to 9-12, 9-22

@@identity global variable 7-19, 8-19,
13-37

identity grab size configuration
parameter 8-20

identity in nonunique index database
option 11-6, 17-9

identity keyword 7-17
IDENTITY property for user-defined

datatypes 6-17
@@idle global variable 13-42
IDs, user

database (db_id) 10-3
server user 10-4
user_id function for 10-4

if...else conditions 13-8 to 13-9, 13-21
case expressions compared to 13-10

if update clause, create trigger 16-4, 16-28 to
16-29

ignore_dup_key option, create index 11-6,
11-11

ignore_dup_row option, create index 11-11 to
11-12

image datatype 6-9
See also Datatypes
“0x” prefix for 8-9

changing with writetext 8-30
Component Integration Services 6-9
initializing with null values 7-16
inserting 8-13
null values in 7-16
prohibited actions on 3-27
selecting 2-13 to 2-15
selecting in views 9-15
subqueries using 5-3
triggers and 16-28
union not allowed on 3-41
updating 8-26
writetext to 9-18

Image functions 10-17
Implicit conversion (of datatypes) 1-16,

6-12, 10-30
Implicit transactions 18-13
index_col system function 10-3
Indexes

See also Clustered indexes; Database
objects

composite 11-5
creating 11-4 to 11-10
distribution pages 8-34
dropping 11-13
duplicate values and 11-11
guidelines for 11-3 to 11-4
IDENTITY columns in

nonunique 11-6
integrity constraints 7-32
joins and 11-3
key values 11-9
leaf level 11-8, 11-10
on multiple columns 11-5
naming 1-9
nonclustered 11-8 to 11-10
options 11-11 to 11-13
page fill 11-7
on presorted data 11-13
on primary keys 11-3, 11-8
renaming 7-52
retrieval speed and 11-3, 11-4, 11-9
searching 11-3
space used by 7-60



Transact-SQL User’s Guide Index-17

Adaptive Server Enterprise Release 11.5.x

unique 11-6, 11-11
views and 9-6, 9-7

Index pages
allocation of 10-4
system functions 10-3, 10-4
total of table and 10-4

Infected processes 13-29
Information messages (Server). See Error

messages; Severity levels
in keyword 2-22 to 2-25

check constraint using 7-36
in expressions 1-17
subqueries using 5-18, 5-20 to 5-22

Inner queries. See Subqueries
Inner tables of joins 4-17
Input packets, number of 13-42
insert command 8-12 to 8-25, 9-19

batches using 13-3
duplicate data from 11-11, 11-12
IDENTITY columns and 8-17
image data and 6-9
null/not null columns and 8-15, 8-16
rules and 12-2
select 8-12
subqueries and 5-7
text data and 6-7
triggers and 16-5, 16-7 to 16-8, 16-9 to

16-10
union operator in 3-41
views and 9-17

inserted table 16-7 to 16-8, 17-6
Inserting

rows 8-12 to 8-25
Installing

sample image data in pubs2 A-25
installmaster script 14-29
int datatype 6-4, 8-11

See also Integer data; smallint datatype;
tinyint datatype

Integer data 6-4
See also individual datatype names
converting 10-36
in SQL xxxvii

Integer remainder. See Modulo operator
(%)

Integrity. See dbcc (Database Consistency
Checker); Referential integrity

Integrity of data 7-2
constraints 7-27
transactions and 18-24
unique indexes 11-6

Interactive SQL 13-7 to 13-30
Internal structures

pages used for 10-4
Intersection (set operation) 5-27 to 5-28
into clause, select. See select into command
into keyword

fetch 17-14
insert 8-12
select 7-42
union 3-41

inttohex function 6-12, 10-39
@@io_busy global variable 13-42
is_sec_service_on security function 10-41
is null keyword 2-36, 8-16
isnull system function 2-36, 10-3, 10-6

insert and 8-16
iso_1 character set 1-8
@@isolation global variable 13-40, 18-17
Isolation levels 1-26, 18-13, 18-15

changing for queries 18-17
cursor locking 18-20
defined 18-15
level 0 reads 11-6
transactions 18-13 to 18-17

isql utility command xxxii, 1-28 to 1-30
batch files for 13-6 to 13-7
go command terminator 1-29, 13-1

J
Japanese character sets 6-6

object identifiers and 1-7
Joins 1-3

column names in 4-7
column order in results 4-4
comparison operators 4-10



Index-18

Adaptive Server Enterprise Release 11.5.x

Component Integration Services 4-1
correlation names and 4-11
equijoins 4-6, 4-8 to 4-9
from clause in 4-4
help for 4-23
indexes and 11-3
many tables in 4-16 to 4-17
natural 4-8
not-equal 4-10, 4-13 to 4-16
null values and 2-34, 4-22
operators for 4-6, 4-10
outer 4-6, 4-17 to 4-22
process of 4-1 to 4-2, 4-7
relational model and 4-2
relational operators and 4-6
restrictions 4-7
selection criteria for 4-9
select list in 4-3 to 4-4
self-joins 4-11 to 4-12
self-joins compared to subqueries 5-6
subqueries compared to 4-14, 5-21 to

5-23
theta 4-6
updates using 8-29
views and 9-9
where clause in 4-5 to 4-6, 4-8, 4-9

K
Keys, table

See also Common keys; Foreign keys;
Primary keys

views and 9-6
Key values 11-9

referential integrity and 16-1
Keywords 1-5 to 1-6

control-of-flow 13-7 to 13-30
new 1-28
phrases 1-2

L
Labels 13-23
@@langid global variable 13-41

Language cursors 17-7
Language defaults 8-6, 8-8
@@language global variable 13-42
language option, set 8-6, 8-8
Languages, alternate

effect on date parts 8-6, 8-8, 10-26
Last-chance thresholds 10-4
lct_admin system function 10-4
Leaf levels of indexes 11-8, 11-10
Length

of expressions in bytes 10-3
of columns 10-2

Less than. See Comparison operators
Levels

nested transactions 18-10
@@trancount global variable 13-37,

18-11
transaction isolation 18-13 to 18-17

like keyword 2-25 to 2-31
check constraint using 7-36
searching for dates with 8-8

Lines (text), entering long 2-32
List, matching in select 2-22 to 2-25
Listing

database objects 7-61
datatypes with types 6-13 to 6-14

Literal character specification
quotes (" ") 1-16

Literal values
null 2-36

Local variables 13-22 to 13-36
displaying on screen 13-24 to 13-26
last row assignment 13-33
printing values 13-32

Locking
cursors and 17-24
transactions and 18-3

log10 mathematical function 10-22
Logical expressions xxxvi

case expression and 13-10
if...else 13-8
syntax 1-17
truth tables for 1-18

Logical operators 2-37 to 2-39



Transact-SQL User’s Guide Index-19

Adaptive Server Enterprise Release 11.5.x

having clauses 3-21
Login process 1-28 to 1-29
log mathematical function 10-22
log on option

create database 7-8
Logs. See Transaction logs
log10 mathematical function 10-22
Loops

break and 13-21
continue and 13-21
while 13-20 to 13-22

Lower and higher datatypes. See
Precedence

lower string function 10-9
ltrim string function 10-9

M
Macintosh character set 1-8
Makefile for ESP DLLs 15-16 to 15-18
master database 7-4

guest user in 7-4
Master-detail relationship 16-6
Master tables 16-6
Matching

row (*= or =*), outer join 4-17
Mathematical functions

examples 10-23
list 10-21 to 10-23
syntax 10-20 to 10-21

@@max_connections global
variable 13-43

max_rows_per_page option 11-7
max aggregate function 3-2, 10-19

See also Aggregate functions
as row aggregate 3-32

@@maxcharlen global variable 13-42
Messages 13-24 to 13-28, 14-31

transactions and 18-30
mi. See minute date part
millisecond date part 10-26
min aggregate function 3-2, 10-19

See also Aggregate functions
as row aggregate 3-32

Minus sign (-)
subtraction operator 1-12

minute date part 10-26
mirrorexit keyword 13-29
Mixed datatypes, arithmetic operations

on 1-13, 6-13 to 6-15
mm. See month date part
model database 6-15, 7-4

user-defined datatypes in 7-24
Modifying

databases 7-9
tables 7-48

Modifying data. See Data modification
Modulo operator (%) 1-13, 2-9 to 2-13
money datatype 6-10, 6-14

See also smallmoney datatype
entry format 8-10

Monitoring
system activity 13-42

month date part 10-26
Month values

date part abbreviation and 10-26
ms. See millisecond date part
Multibyte character sets

converting 10-34
datatypes for 6-6 to 6-7

Multicolumn index. See Composite
indexes

Multiple SQL statements. See Batch
processing

Multiplication (*) operator 1-12, 2-9 to
2-13

Multitable views 4-22, 9-21
delete and 4-22
insert and 4-22

N
“N/A”, using “NULL” or 8-15
Names

alias for table 2-18
date parts 10-25
db_name function 10-3
host computer 10-3



Index-20

Adaptive Server Enterprise Release 11.5.x

index_col and index 10-3
object_name function 10-4
suser_name function 10-4
of transactions 18-9
user_name function 10-5
user system function 10-4

Naming
See also Renaming
columns 1-9
conventions 1-5 to 1-10
database objects 1-6 to 1-10
databases 7-6
indexes 1-9
labels 13-23
local variables 13-31
parameters in procedures 14-6 to 14-7
rules 12-9
savepoints 18-7
stored procedures 1-9 to 1-11
tables 7-11 to 7-12, 7-52 to 7-53
temporary tables 1-6, 7-11, 7-24
transactions 18-1, 18-2, 18-7
triggers 16-4
views 1-9 to 1-11

Natural joins 4-8
nchar datatype 6-6 to 6-7

entry rules 8-4
like and 2-25
operations on 10-7 to 10-17

@@ncharsize global variable 13-42
Negative sign (-) in money values 8-10
Nested queries. See Nesting; Subqueries
Nesting

See also Joins
aggregate functions 3-14
begin...end blocks 13-19
begin transaction/commit

statements 18-10
comments 13-30
group by clauses 3-10 to 3-14
groups 3-10
if...else conditions 13-9
levels 14-15
sorts 3-26

stored procedures 14-15
string functions 10-7, 10-16
subqueries 5-6
transactions 18-10, 18-22
triggers 14-15, 16-24 to 16-27
vector aggregates 3-14
warning on transactions 18-9
while loops 13-22

@@nestlevel global variable 13-38
nested procedures and 14-15
nested triggers and 16-24

noholdlock keyword, select 18-19
nonclustered constraint

create index 11-9
Nonclustered indexes 11-8 to 11-10

integrity constraints 7-32
“none”, using “NULL” or 8-15
Nonrepeatable reads 18-15
Nonsharable temporary tables 7-24
Normalization 4-3
not between keyword 2-21
Not-equal joins 4-13 to 4-16

compared to subqueries 5-23
not exists keyword 5-26 to 5-28

See also exists keyword
not in keyword 2-22 to 2-25

NULL values and 5-23
subqueries using 5-22 to 5-23

not keyword
See also Logical operators
search conditions 2-21, 2-38 to 2-39

not like keyword 2-27
not null keyword 6-16, 7-14, 7-41

See also Null values
Not null values 7-15
nullif keyword 13-18
null keyword 2-32, 7-31

See also Null values
defaults and 7-14, 12-7
in user-defined datatypes 6-16

Null string in character columns 8-15
Null values 2-32 to 2-36, 7-13 to 7-14

aggregate functions and 3-6 to 3-7
alter table and 7-50



Transact-SQL User’s Guide Index-21

Adaptive Server Enterprise Release 11.5.x

built-in functions and 10-5
case expressions and 13-13, 13-18 to

13-19
check constraints and 7-37
comparing 2-34, 13-35 to 13-36
comparing with nullif 13-18
in computed columns 2-10
constraints and 7-14
create procedure and 14-11
datatypes allowing 6-16
default parameters as 2-33
defaults and 7-42, 12-7
defining 7-15
distinct keyword and 2-17
group by and 3-15 to 3-16
insert and 8-16, 9-20
inserting substitute values for 8-16
joins and 2-34, 4-22
new rules and column definition 2-36
not allowed in IDENTITY

columns 7-17
null defaults and 7-15
parameter defaults as 14-11, 14-12
rules and 7-14, 7-42
selecting 2-34 to 2-36
sort order of 3-26, 3-27
triggers and 16-28 to 16-29
variables and 13-32, 13-33, 13-35 to

13-36
Number (quantity of)

databases within transactions 18-30
rows reported by rowcnt 10-4
Server databases 7-6
tables allowed in a query 2-18, 4-5

Number of pages
allocated to table or index 10-4
reserved_pgs function 10-4
used_pgs function 10-4
used by table and clustered index

(total) 10-4
used by table or index 10-3

Numbers
asterisks (**) for overlength 10-12
database ID 10-3

Numeric data
concatenating 10-16
operations on 10-23

numeric datatype 8-11
Numeric expressions xxxvii
nvarchar datatype 6-7

See also Character data; Datatypes
entry rules 8-4
like and 2-25
operations on 10-7 to 10-17

O
object_id system function 10-4
object_name system function 10-4
Objects. See Database objects; individual

object names
Offset position, readtext command 2-15
of option, declare cursor 17-6
on keyword

alter database 7-9
create database 7-7
create index 11-5, 11-10, 11-13
create table 7-13

Open Client applications
set options for 1-22

open command 17-12
Opening cursors 17-4
Operators 1-5

arithmetic 1-12, 2-9 to 2-12
bitwise 1-13 to 1-14, 2-8
comparison 1-15, 2-20 to 2-21
join 4-6, 4-19 to 4-22
logical 2-37 to 2-39
precedence 1-12, 2-12, 2-38 to 2-39
relational 4-6

@@options global variable 13-40
or (|) bitwise operator 2-37 to 2-39

See also Logical operators
Order

See also Indexes; Precedence; Sort
order

of execution of operators in
expressions 1-12



Index-22

Adaptive Server Enterprise Release 11.5.x

of null values 3-27
order by clause

compute by and 3-32 to 3-33
group by and 3-27
indexing and 11-3
select and 3-25 to 3-27
union and 3-41

or keyword
in expressions 1-17
in joins 4-9

Outer joins 4-17 to 4-22
See also Joins
operators 4-7, 4-19 to 4-21
restrictions on 4-21

output option 14-21 to 14-26
Overflow errors

arithmetic 10-37
data and time conversion 10-35
set arithabort and 10-38

P
@@pack_received global variable 13-42
@@pack_sent global variable 13-42
@@packet_errors global variable 13-42
Padding, data

null values and 7-16
underscores in temporary table

names 7-24, 7-25
Pages, data

allocation of 10-4
data_pgs system function 10-3
reserved_pgs system function 10-4
used_pgs system function 10-4
used for internal structures 10-4
used in a table or an index 10-3, 10-4

Pair of columns. See Common keys; Joins
@@parallel_degree global variable 13-40
Parameters, procedure 14-6 to 14-12

delimited identifiers not allowed 1-8
maximum number 14-27

Parentheses ()
See also Symbols section of this index
in arithmetic statements 2-12

in an expression 1-12
in system functions 10-5

Passwords 1-28
choosing secure 1-29

patindex string function 10-9
See also Wildcard characters
datatypes for 10-7
examples of using 10-10 to 10-11
text/image function 10-17

Pattern matching 10-13
charindex string function 10-10
difference string function 10-13
patindex string function 10-10

Percent sign (%)
modulo operator 1-13, 2-9 to 2-13

Performance
indexes and 11-3
log placement and 7-8
stored procedures and 14-5
transactions and 18-4
triggers and 16-30
variable assignment and 13-32

Period (.)
separator for qualifier names 1-9

Permissions 1-30, 7-3, 7-6
assigning 7-54
create procedure 14-5
database object owners 8-34
data modification 8-2
readtext and column 7-16
referential integrity 7-35
stored procedures 14-4, 14-28
system procedures 14-29 to 14-30
triggers and 16-27 to 16-28, 16-31
views 9-8, 9-23
writetext and column 7-16

Phantoms in transactions 18-15
pi mathematical function 10-22
Placeholders

print message 13-25
Plus (+)

arithmetic operator 1-12, 2-9 to 2-13
null values and 2-36



Transact-SQL User’s Guide Index-23

Adaptive Server Enterprise Release 11.5.x

string concatenation operator 1-14,
10-15

Pointers
text or image column 8-30

Positioning cursors 17-1
Pound sign (#) temporary table name

prefix 7-11, 7-23, 7-25
Pound sterling sign (£)

in identifiers 1-7
in money datatypes 8-10

power mathematical function 10-22
Precedence

of lower and higher datatypes 1-16
of operators in expressions 1-12

Precision, datatype
exact numeric types 8-11

Primary keys 7-58, 16-6 to 16-7
constraints 7-31
dropping 16-10 to 16-12
indexing on 11-3, 11-8
referential integrity and 16-6, 16-10
updating 16-13 to 16-17

print command 13-24 to 13-26, 13-27 to
13-28

Privileges. See Permissions
proc_role system function 14-20
Procedures. See Remote procedure calls;

Stored procedures; System
procedures

Processes (Server tasks)
infected 13-29

processexit keyword, waitfor 13-29
Processing cursors 17-2
@@procid global variable 13-43
Projection

See also select command
distinct views 9-10
queries 1-3
views 9-8

publishers table
pubs2 database A-1
pubs3 database B-1

pubs2 database 1-30, A-1 to A-27
changing data in 8-3

diagram A-27
guest user in 7-3
organization chart A-27
table names A-1
using in examples xxxii

pubs3 database 1-30, B-1 to B-29
table names B-1

Punctuation
enclosing in quotation marks 6-16

Q
qq. See quarter date part
Qualifying

column names in joins 4-3
column names in subqueries 5-4
database objects 1-9
object names within stored

procedures 14-27
table names 7-11

quarter date part 10-26
Queries 1-1, 1-2, 1-3

nesting subqueries 5-6
optimizing 14-5
parallel 2-2
projection 1-3

Query processing 14-2
Quotation marks (" ")

comparison operators and 1-15
for empty strings 1-16, 8-16
enclosing column headings 2-7 to 2-8
enclosing parameter values 14-9
enclosing values 6-6, 8-4
in expressions 1-16
literal specification of 1-16
literal specification of<> 2-31

Quoted identifiers 1-8

R
Radians, conversion to degrees 10-22
radians mathematical function 10-23
raiserror command 13-26
rand mathematical function 10-23



Index-24

Adaptive Server Enterprise Release 11.5.x

Range queries 2-21, 11-3
using < and > 2-22

Read-only cursors 17-6, 17-10
readtext command 2-14 to 2-15

isolation levels and 18-17
and views 9-15

real datatype 6-5, 8-10
See also Datatypes; Numeric data

Records, table. See Rows, table
Recovery 18-31 to 18-32

backing up databases 7-43
log placement and 7-8
temporary tables and 7-24
time and transaction size 18-30
transactions and 18-4

Reference information
datatypes 6-1
Transact-SQL functions 10-1

references constraint 7-34
Referencing 14-33 to 14-34
Referential integrity 7-32 to 7-36, 8-2

See also Data integrity; Triggers
constraints 7-28, 7-32
create schema command 7-35
cross-referencing tables 7-34
general rules 7-35
IDENTITY columns 7-18
maximum references allowed 7-34
tips 7-37
triggers for 16-1, 16-6 to 16-7

Regulations
batches 13-2
identifiers 1-5

Relational expressions 1-17
See also Comparison operators

Relational model, joins and 4-2
Relational operations 1-3
Relational operators 4-6
Relations. See Tables
Remarks text. See Comments
Remote procedure calls 1-11, 14-17 to

14-18
syntax for 14-3

user-defined transactions 14-6, 18-26,
18-31

Remote servers 1-11, 14-17 to 14-18,
14-30

Component Integration Services 1-24
execute and 14-3
non-Sybase 1-24
system procedures affecting 14-30

Removing. See Dropping
Renaming

See also Naming
database objects 7-52 to 7-53
stored procedures 14-27
tables 7-52 to 7-53, 9-17
views 9-17

Repeating subquery. See Subqueries
replicate string function 10-9
Repositioning cursors 17-5, 17-12
reserved_pgs system function 10-4
Restoring

sample databases 1-30
Restrictions 1-3

See also select command
Results

cursor result set 17-1
Retrieving

null values 2-33
Retrieving data. See Queries
return command 13-23 to 13-24, 14-20
Return parameters 14-21 to 14-26
Return status 14-18 to 14-20
reverse string function 10-9
revoke command 7-54
Right-justification of str function 10-12
right string function 10-9, 10-14
Roles

show_role security function 10-42
stored procedures and 14-20

Roles, user-defined 7-55
rollback command 18-7 to 18-8

See also Transactions
in stored procedures 18-30
triggers and 16-22, 18-30

rollback trigger command 16-22



Transact-SQL User’s Guide Index-25

Adaptive Server Enterprise Release 11.5.x

Rounding
approximate numeric datatypes 6-5
converting money values 10-34
datetime values 6-11
money values 6-10
str string function and 10-12

round mathematical function 10-23
Row aggregates 3-29

compared to aggregate functions 3-32
compute and 1-19, 3-32
group by clause and 3-33
views and 9-18

rowcnt system function 10-4
@@rowcount global variable 13-40

cursors and 17-16
triggers and 16-9

Rows, table 1-2
See also Triggers
adding 8-12 to 8-25
changing 8-25 to 8-30
choosing 2-1, 2-19
copying 8-24
dropping 8-31 to 8-33
duplicate 3-39, 11-12
number of 10-4
summary 3-29 to 3-31
unique 11-12
uniquely identifying 7-16

roysched table
pubs2 database A-19 to A-22
pubs3 database B-23 to B-26

RPCs. See Remote procedure calls
rtrim string function 10-9
Rules 1-21, 8-14, 12-8

See also Database objects
binding 12-10 to 12-12
column definition conflict with 2-36
creating new 12-9
datatypes and 6-17
dropping user-defined 12-13
naming user-created 12-9
null values and 7-14
precedence 12-11
source text 12-12

specifying values with 12-10
system tables and 12-10
testing 12-2, 12-9
triggers and 16-2
unbinding 12-13
and views 9-6, 9-7
violations in user transaction 18-26
with temporary constraints 12-12

S
salesdetail table

pubs2 database A-12 to A-16
pubs3 database B-12 to B-16

sales table
pubs2 database A-16
pubs3 database B-16

Sample databases. See pubs2 database;
pubs3 database

Savepoints 18-7
setting using save transaction 18-2

save transaction command 18-7 to 18-8
See also Transactions

Scalar aggregates 3-3, 3-14
@@scan_parallel_degree global

variable 13-40
Schemas 7-34
Scope of cursors 17-7
Screen messages 13-24 to 13-28
Search conditions 2-19
second date part 10-26
Security

See also Permissions
stored procedures as 14-4, 14-28
views and 9-3, 9-23

Security functions 10-41 to 10-42
Seed values

rand function 10-23
set identity_insert and 8-18

Segments, placing objects on 7-13, 11-5,
11-10, 11-13

select * command 2-4 to 2-5, 4-5
limitations 8-24 to 8-25
new columns and limitations 14-14



Index-26

Adaptive Server Enterprise Release 11.5.x

select command 1-3, 2-1, 2-2 to 2-39
See also Joins; Subqueries; Views
altered rows and 7-50
Boolean expressions in 13-8
character data in 2-31
character strings in display 2-8
choosing columns 2-1 to 2-2
choosing rows 2-1, 2-19
column headings 2-6 to 2-7
column order in 2-6
combining results of 3-37 to 3-41
computing in 2-8 to 2-13
create view and 9-8
creating tables for results 7-42 to 7-44
database object names and 2-3
displaying results of 2-1, 2-6 to 2-8
with distinct 2-16 to 2-17
eliminating duplicate rows with 2-16

to 2-17
for browse 17-27
if...else keyword and 13-8
image data 2-13 to 2-15
inserting data with 8-12, 8-14, 8-22 to

8-25
isolation levels and 18-17
matching character strings with 2-25

to 2-31
quotation marks in 2-7 to 2-8
reserved words in 2-7
text data 2-13 to 2-15
variable assignment and 13-22 to

13-36
variable assignment and multiple row

results 13-33
and views 9-17
wildcard characters in 2-26 to 2-29

select distinct query, group by and 3-28
select distinct query, order by and 3-28
select into/bulkcopy/pllsort database option

select into and 7-42
writetext and 8-30

select into command 7-42 to 7-44
compute and 3-32
IDENTITY columns and 7-47

not allowsd in cursors 17-6
temporary table 7-27
union and 3-41

Selections. See select command
Select list 2-4, 2-15, 4-3 to 4-4

subqueries using 5-24
union statements 3-37, 3-39

Self-joins 4-11 to 4-12
compared to subqueries 5-6

Server cursors 17-7
@@servername global variable 13-43
Server user name and ID

suser_id function 10-4
suser_name function for 10-4

set command
chained transaction mode 1-26
character string truncation and 1-26
inside a stored procedure 14-16
transaction isolation levels and 18-16
within update 8-27

Set theory operations 5-27 to 5-28
setuser command 7-6, 7-54
Severity levels, error

user-defined messages 13-26
Shareable temporary tables 7-23
shared keyword

cursors and 17-25
locking and 18-18

show_role system function 10-42
show_sec_services security function 10-42
sign mathematical function 10-23
sin mathematical function 10-23
Size

column 10-2
database 7-7, 7-9 to 7-10

Size limit
approximate numeric datatypes 6-5

Size of columns, by datatype 6-2
Slash (/)

division operator 1-12, 2-9
Slash asterisk (/*) comment

keyword 13-29, 13-30
smalldatetime datatype 6-10



Transact-SQL User’s Guide Index-27

Adaptive Server Enterprise Release 11.5.x

See also datetime datatype; timestamp
datatype

converting 10-40
date functions and 10-29 to 10-30
entry format 8-4, 10-25
operations on 10-24 to 10-29
storage of 10-25

smallint datatype 6-4, 8-11
See also int datatype; tinyint datatype

smallmoney datatype 6-10, 6-14
See also money datatype
entry format 8-10

sorted_data option, create index 11-13
Sort order

See also order by clause
comparison operators and 1-15
order by and 3-25

soundex string function 10-10, 10-13
Source text 1-3

encrypting 1-4
sp_addextendedproc system

procedure 15-19
sp_addmessage system procedure 13-27 to

13-28
sp_addtype system procedure 6-1, 6-15,

7-24
sp_adduser system procedure 7-5
sp_bindefault system procedure 6-17, 12-4

to 12-6
batches using 13-3

sp_bindrule system procedure 6-17, 12-10
to 12-12

batches using 13-3
sp_changedbowner system procedure 7-6
sp_commonkey system procedure 4-24
sp_dboption system procedure

transactions and 18-5
sp_depends system procedure 9-25, 14-33

to 14-34, 16-32
sp_dropextendedproc system

procedure 15-20
sp_dropsegment system procedure 7-10
sp_droptype system procedure 6-18
sp_extendsegment system procedure 7-10

sp_foreignkey system procedure 4-23,
7-58, 16-7

sp_freedll system procedure 15-3
sp_getmessage system procedure 13-27 to

13-28
sp_helpconstraint system procedure 7-58
sp_helpdb system procedure 7-55
sp_helpdevice system procedure 7-7
sp_helpextendedproc system

procedure 15-23
sp_helpindex system procedure 11-14
sp_helpjoins system procedure 4-23, 16-6
sp_helprotect system procedure 14-34
sp_help system procedure 7-55 to 7-58

IDENTITY columns and 9-11
sp_helptext system procedure

defaults 12-14
procedures 14-4, 14-33
rules 12-14
triggers 16-31, 16-32

sp_modifylogin system procedure 7-5
sp_monitor system procedure 13-42
sp_password system procedure 1-29
sp_primarykey system procedure 7-58,

16-6
sp_procxmode system procedure 18-28
sp_recompile system procedure 14-5
sp_rename system procedure 7-52 to 7-53,

9-17, 14-27
sp_spaceused system procedure 7-60
sp_unbindefault system procedure 12-6 to

12-7
sp_unbindrule system procedure 12-13
sp_who system procedure 13-29
Space

database storage 7-9 to 7-10
estimating table and index size 7-60
freeing with truncate table 8-34
for index pages 7-60

Spaces, character
empty strings (" ") or (' ') as 1-16, 8-16

space string function 10-10
Special characters 1-6
Speed (Server)



Index-28

Adaptive Server Enterprise Release 11.5.x

of recovery 18-30
@@spid global variable 13-43
SQL. See Transact-SQL
SQL standards 1-24

set options for 1-22, 1-25
transactions 18-22

@@sqlstatus global variable 13-38, 17-14
sqrt mathematical function 10-23
SRV_PROC structure 15-7
ss. See second date part
Statements 1-2, 1-6

statement blocks (begin...end) 13-19
timed execution of statement

blocks 13-28
store_employees table, pubs3

database B-19 to B-23
Stored procedures 1-19, 14-1 to 14-4

See also System procedures; Triggers
access permissions on 7-54
checking for roles in 14-20
compiling 14-2
control-of-flow language 13-7 to

13-30
creating 14-2 to 14-18, 14-26
cursors within 17-22
default parameters 14-9 to 14-12
dependencies 14-33 to 14-34
dropping 14-28
grouping 14-13
information on 14-32
isolation levels 18-27
local variables and 13-31
modes 18-27
naming 1-9 to 1-11
nesting 14-15
object owner names in 14-27
parameters 14-6, 14-12
permissions on 14-4, 14-28
renaming 14-27
results display 14-3
return parameters 14-21 to 14-26
return status 14-18 to 14-20
rollback in 18-30
as security mechanisms 14-4, 14-28

source text 14-16
storage of 14-4
temporary tables and 7-25, 14-27
timed execution of 13-28
transactions and 18-22 to 18-29
with recompile 14-14

stores table
pubs2 database A-18
pubs3 database B-18

string_rtruncation option, set 1-26
String functions 10-7 to 10-17

concatenating 10-15 to 10-16
examples 10-10 to 10-14
nesting 10-7, 10-16
testing similar 10-13

Strings
concatenating 1-14, 10-7, 10-15 to

10-16
empty 6-6, 10-16
matching with like 2-25 to 2-31
truncating 8-4

str string function 10-10, 10-12
Structured Query Language (SQL) 1-1
stuff string function 10-10, 10-12
Subqueries 5-1

See also Joins
aggregate functions and 5-12, 5-13
all keyword and 5-11, 5-16, 5-25
any keyword and 1-17, 5-11, 5-17, 5-25
column names in 5-4
comparison operators in 5-11 to 5-17,

5-25
comparison operators in

correlated 5-30 to 5-32
correlated or repeating 5-28 to 5-32
correlation names in 5-5, 5-30
datatypes not allowed in 5-3
delete statements using 5-7
exists keyword in 5-24 to 5-28
in expressions 1-17
expressions, replacing with 5-8
group by clause in 5-13 to 5-14, 5-31 to

5-32
having clause in 5-13 to 5-14, 5-32



Transact-SQL User’s Guide Index-29

Adaptive Server Enterprise Release 11.5.x

in keyword and 2-23, 5-18, 5-20 to
5-22, 5-25

insert statements using 5-7
joins as 4-14
joins compared to 5-21 to 5-23
manipulating results in 5-3
modified comparison operators

and 5-14, 5-15, 5-25
nesting 5-6
not-equal joins and 4-15 to 4-16
not exists keyword and 5-26 to 5-28
not in keyword and 5-22 to 5-23
null values and 5-2
order by and 3-27
repeating 5-28 to 5-32
restrictions on 5-2
select lists for 5-24
syntax 5-2 to 5-10
types 5-10
unmodified comparison operators

and 5-11 to 5-13
update statements using 5-7
where clause and 5-3, 5-22, 5-24

substring string function 10-10
Subtraction operator (-) 1-12, 2-9 to 2-13
Suffix names, temporary table 7-24
sum aggregate function 3-2, 10-19

See also Aggregate functions
as row aggregate 3-32

Summary rows 3-29 to 3-31
Summary values 1-19, 3-1, 3-7

aggregate functions and 3-29
triggers and 16-18 to 16-21

suser_id system function 10-4
suser_name system function 10-4
syb_identity keyword 7-19, 9-11

IDENTITY columns and 7-19, 8-18
sybsystemprocs database 7-4, 14-29, 15-22
Symbols

See also Wildcard characters; Symbols
section of this index

arithmetic operator 1-12, 2-9
bitwise operator 2-9
comparison operator 1-15, 2-20

matching character strings 2-26
money 8-10
in SQL statements xxxv

Synonyms
datatype 6-2
keywords 1-28
out for output 14-26

Syntax
conventions in manual xxxv
Transact-SQL 1-5 to 1-11

syscolumns table 6-11
syscomments table 14-4, 16-31
sysdatabases table 7-6
sysdevices table 7-7
syskeys table 4-23, 16-6
syslogs table 18-31
sysmessages table

raiserror and 13-26
sysname custom datatype 6-12
sysobjects table 7-57 to 7-58
sysprocedures table 16-31
sysprocesses table 13-29
System Administrator

database ownership 7-6
user ID 10-2

System datatypes. See Datatypes
System extended stored

procedures 15-22
System functions

examples 10-1, 10-5 to 10-7
syntax 10-1, 10-5

System messages. See Error messages;
Messages

System procedures 1-19, 14-29 to 14-32
See also Stored procedures; individual

procedure names
data definition 14-31
delimited identifiers not allowed as

parameters 1-8
isolation level 18-21
for login management 14-30
not allowed in user-defined

transactions 18-6
re-optimizing queries with 14-5



Index-30

Adaptive Server Enterprise Release 11.5.x

security administration 14-30
system administration 14-31
on temporary tables 7-26
user-defined messages 14-31
viewing text of 14-33

System tables 7-3, 9-5
See also Tables; individual table names
defaults and 12-5
dropping 7-53
rules and 12-10
system procedures and 14-29
triggers and 16-28, 16-31 to 16-33

systypes table 6-13, 7-57, 7-58
sysusages table 7-6
sysusermessages table 13-26, 13-27
sysusers table 7-3

T
Table columns. See Columns
Table-level constraints 7-28
Table pages

system functions 10-3, 10-4
Table rows. See Rows, table
Tables 1-2, 7-10 to 7-27

See also Database objects; Triggers;
Views

access permissions on 7-54
adding columns to 7-49
allowed in a from clause 2-18, 4-5
changing 7-48 to 7-53
correlation names 2-18, 4-11, 5-5
correlation names in subqueries 5-30
creating new 7-39 to 7-48
dependent 16-10
designing 7-39
dropping 7-53
IDENTITY column 7-17 to 7-18
inner 4-17
isnull system function and 8-16
joins of 4-1 to 4-24
names, in joins 4-5, 4-11
naming 1-6 to 1-10, 2-18, 7-11 to 7-12
renaming 7-52 to 7-53

row copying in 8-24
space used by 7-60

Tables, temporary. See Temporary tables
tan mathematical function 10-23
tempdb database 7-4, 7-24
Temporary tables 1-6, 2-18

See also Tables; tempdb database
create table and 7-11, 7-23 to 7-24
creating 7-23 to 7-24
naming 1-6, 7-11, 7-24, 7-25
select into and 7-27, 7-42 to 7-44
stored procedures and 14-27
triggers and 7-24, 16-28
views not permitted on 7-24, 9-6

Text
line continuation with backslash

(\) 2-32
@@textcolid global variable 13-44
text datatype 6-7

See also Datatypes
changing with writetext 8-30
Component Integration Services 6-7
converting 10-34
entry rules 8-4
initializing with null values 7-16
inserting 8-13
length of data returned 1-22
like and 2-25, 2-26
operations on 10-7, 10-17 to 10-19
prohibited actions on 3-27
selecting 2-13 to 2-15
selecting in views 9-15
subqueries using 5-3
triggers and 16-28
union not allowed on 3-41
updating 8-26
updating in views 9-18
where clause and 2-19, 2-26

@@textdbid global variable 13-44
Text functions 10-17 to 10-19
@@textobjid global variable 13-44
Text pointer values 8-30
textptr function 2-14, 10-18
@@textptr global variable 13-44



Transact-SQL User’s Guide Index-31

Adaptive Server Enterprise Release 11.5.x

@@textsize global variable 2-13, 13-40,
13-44

textsize option, set 10-18
@@textts global variable 13-44
textvalid function 10-18
Theta joins 4-6

See also Joins
@@thresh_hysteresis global

variable 13-43
Thresholds

last-chance 10-4
Time interval, execution 13-28
time option, waitfor 13-28
timestamp datatype 6-11

See also datetime datatype;
smalldatetime datatype

browse mode and 17-27
comparison using tsequal

function 10-4
inserting data and 8-12
skipping 8-13

@@timeticks global variable 13-43
Time values

See also Dates; datetime datatype;
smalldatetime datatype

display format 10-25
entry format 8-5 to 8-6
functions on 10-24 to 10-26
like and 8-8
searching for 8-8
storage 10-24

Timing
@@error status check 13-37

tinyint datatype 6-4, 8-11
See also int datatype; smallint datatype

titleauthor table
pubs2 database A-10 to A-12
pubs3 database B-10

titles table
pubs2 database A-4 to A-10
pubs3 database B-4 to B-10

@@total_errors global variable 13-42
@@total_read global variable 13-43
@@total_write global variable 13-43

Totals
See also Aggregate functions
grand (compute without by) 3-36
with compute clause 3-29

@@tranchained global variable 13-40
@@trancount global variable 13-37,

18-11
Transaction logs 18-31

on a separate device 7-8
size 7-8
writetext and 8-30

Transactions 8-3, 18-1 to 18-32
canceling 18-30
Component Integration Services 18-4
cursors and 18-29
isolation levels 1-26, 18-13
locking 18-3
modes 1-25, 18-13
names not used in nested 18-9
naming 18-7
nesting levels 18-10, 18-22
number of databases allowed 18-30
performance and 18-4
recovery and 18-4, 18-31
SQL standards compliance 18-22
states 18-9
stored procedures and 18-8
stored procedures and triggers 18-22
timed execution 13-28
@@transtate global variable 18-9
triggers and 16-22, 18-8

Transact-SQL
enhancements to 1-18 to 1-24
extensions 1-23 to 1-24

Translation
of integer arguments into binary

numbers 1-14
@@transtate global variable 13-38
Triggers 1-20, 16-1 to 16-33

See also Database objects; Stored
procedures

Component Integration
Services 16-28

creating 16-3 to 16-5



Index-32

Adaptive Server Enterprise Release 11.5.x

dropping 16-31
help on 16-31
on image columns 16-28
naming 16-4
nested 16-24 to 16-27
nested, and rollback trigger 16-23
null values and 16-28 to 16-29
object renaming and 16-30
performance and 16-30
permissions and 16-27 to 16-28, 16-31
recursion 16-25
restrictions on 16-5, 16-28
rollback in 18-30
rolling back 16-22
rules and 16-2
self-recursion 16-25
set commands in 16-30
source text 16-6
storage 16-31
summary values and 16-18 to 16-21
system tables and 16-28, 16-31 to

16-33
temporary tables and 16-28
test tables 16-7 to 16-9
on text columns 16-28
transactions and 16-22, 18-22 to 18-29
truncate table command and 16-28
views and 9-6, 9-7, 16-28

Trigger tables 16-4, 16-7
dropping 16-31

Trigonometric functions 10-22
TRUE, return value of 5-24
truncate table command 8-34

referential integrity and 7-36
triggers and 16-28

Truncation
binary datatypes 8-9
character string 1-26
str conversion and 10-12
temporary table names 7-24, 7-25

Truth tables
bitwise operations 1-13
logical expressions 1-18

tsequal system function 10-4, 17-28

U
Unbinding

defaults 12-6 to 12-7
rules 12-13

Unchained transaction mode 18-13
Underscore (_)

in temporary table names 7-25
union operator 3-37 to 3-41, 17-10
Unique constraints 7-28, 7-31
Unique indexes 11-6, 11-11
unique keyword 11-6

duplicate data from 11-11
Unknown values. See Null values
Updatable cursors 17-10
update command 8-25 to 8-30, 9-19

cursors and 17-17
duplicate data from 11-11, 11-12
image data and 6-9
multitable views 9-18
null values and 7-15, 7-16, 8-17
rules and 12-2
subqueries using 5-7
text data and 6-7
triggers and 16-7 to 16-8, 16-13 to

16-18, 16-28
views and 4-22, 9-17

update partition statistics command 11-16
update statistics command 11-15

with Component Integration
Services 11-15

Updating
See also Changing; Data modification
in browse mode 10-4, 17-26
cursor rows 17-16
cursors 17-4
foreign keys 16-17 to 16-18
image datatype 8-26
index statistics 11-15
partition statistics 11-16
prevention during browse mode 10-4
primary keys 16-13 to 16-17
text datatype 8-26
using join operations 8-29

upper string function 10-10, 10-14



Transact-SQL User’s Guide Index-33

Adaptive Server Enterprise Release 11.5.x

use command 7-5
batches using 13-2
create procedure with 14-26

used_pgs system function 10-4
user_id system function 10-5
user_name system function 10-2, 10-5,

10-6
User databases 7-4
User-defined datatypes 6-15 to 6-16

adding to tempdb 7-24
defaults and 7-15, 12-4 to 12-6
IDENTITY columns and 6-17, 7-17
rules and 6-15 to 6-17, 12-10 to 12-12
sysname as 6-12
temporary tables and 7-27
timestamp as 6-11

User-defined procedures 14-1 to 14-34
User-defined roles 7-55
User-defined transactions. See

Transactions
User IDs 10-2

user_id function for 10-5
valid_user function 10-5

user keyword
create table 7-30
system function 10-4

User names
defined 10-5
finding 10-4

Users
adding 7-4
management 14-30

user system function 10-4
using option, readtext 2-15

V
valid_name system function 10-5

checking strings with 1-7
valid_user system function 10-5
Values

IDENTITY columns 7-16
null 7-13

values option, insert 8-12 to 8-13

varbinary datatype 6-8 to 6-9
See also Binary data; Datatypes
“0x” prefix 8-9
like and 2-25
operations on 10-7 to 10-17

varchar datatype 6-7
See also Character data; Datatypes
entry rules 8-4
in expressions 1-16
like and 2-25
operations on 10-7 to 10-17

Variable-length columns
compared to fixed-length 6-6
null values in 7-15

Variables
comparing 13-35 to 13-36
declaring 13-31 to 13-36
global 13-36 to 13-44, 14-27
in update statements 8-28
last row assignment 13-33
local 13-22 to 13-36, 14-27
printing values 13-32

Vector aggregates 3-7
nesting 3-14

@@version global variable 13-43
Views 9-1, 9-5

See also Database objects
access permissions on 7-54
advantages 9-2
aggregate functions and 9-18
allowed in a from clause 2-18, 4-5
column names 9-7
computed columns and 9-19
creating 9-5
data modification and 9-17
datatypes and 9-7
defaults and 9-6, 9-7
dependent 9-15
distinct and 9-7
dropping 9-22
functions and 9-9
help on 9-23
IDENTITY columns and 9-22
indexes and 9-6, 9-7



Index-34

Adaptive Server Enterprise Release 11.5.x

insert and 9-12 to 9-14
joins and 4-1, 9-9
keys and 9-6
naming 1-9 to 1-10
permissions on 9-8, 9-23
projection of distinct 9-10
projections 9-8
querying 9-14
readtext and 9-15
redefining 9-15
references 9-25
renaming 9-17
renaming columns 9-7
resolution 9-14, 9-15
restrictions 9-17 to 9-22
retrieving data through 9-14
rules and 9-6, 9-7
security and 9-3
source text 9-12
temporary tables and 7-24, 9-6, 9-7
triggers and 7-24, 9-6, 9-7, 16-28
union and 3-41
update and 9-12 to 9-14
updates not allowed 9-19
with check option 4-22, 9-12 to 9-14, 9-18,

9-21
and writetext 9-15

W
waitfor command 13-28 to 13-29
week date part 10-26
weekday date part 10-26
when...then conditions

in case expressions 13-10, 13-13
where clause

aggregate functions not permitted
in 3-3

compared to having 3-20
delete 8-32
group by clause and 3-16 to 3-17
join and 4-9
joins and 4-5 to 4-6
like and 2-26

null values in a 2-34
search conditions in 2-19
skeleton table creation with 7-44
subqueries using 5-3, 5-22, 5-24
text data and 2-19, 2-26
update 8-28

where current of clause 17-17
while keyword 13-20 to 13-22
Wildcard characters

default parameters using 14-11
in a like match string 2-26 to 2-31
searching for 2-28

with check option option
views and 9-12 to 9-14

with log option, writetext 8-3
with recompile option

create procedure 14-14
execute 14-14

wk. See week date part
work keyword (transactions) 18-7
Write-ahead log 18-31
writetext command 8-30

and views 9-15, 9-18
with log option 8-3

X
xp_cmdshell context configuration

parameter 15-5
xp_cmdshell system extended stored

procedure 15-22
xp_cmdshell context configuration

parameter and 15-6
XP Server 1-20, 15-2 to 15-3

Y
year date part 10-26
Yen sign (¥)

in identifiers 1-7
in money datatypes 8-10

yy. See year date part



Transact-SQL User’s Guide Index-35

Adaptive Server Enterprise Release 11.5.x

Z
Zeros

using NULL or 8-16



Index-36

Adaptive Server Enterprise Release 11.5.x


